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Abstract

We propose an unsupervised learning algorithm for
automatically inferring the mappings between English
nouns and corresponding video objects. Given a se-
quence of natural language instructions and an un-
aligned video recording, we simultaneously align each
instruction to its corresponding video segment, and also
align nouns in each instruction to their corresponding
objects in video. While existing grounded language ac-
quisition algorithms rely on pre-aligned supervised data
(each sentence paired with corresponding image frame
or video segment), our algorithm aims to automatically
infer the alignment from the temporal structure of the
video and parallel text instructions. We propose two
generative models that are closely related to the HMM
and IBM 1 word alignment models used in statisti-
cal machine translation. We evaluate our algorithm on
videos of biological experiments performed in wetlabs,
and demonstrate its capability of aligning video seg-
ments to text instructions and matching video objects
to nouns in the absence of any direct supervision.

Introduction
Learning to map natural language expressions to their cor-
responding referents in the physical environment is known
as grounded language acquisition. Recently there has been
growing interest in grounded language acquisition. The ex-
isting works typically assume the availability of aligned par-
allel data where each natural language sentence is paired
with its corresponding image or video segment (Krishna-
murthy and Kollar 2013; Tellex et al. 2013; Matuszek et al.
2012; Tellex et al. 2011). Manually pairing each video seg-
ment or image frame with the corresponding sentence can
be tedious and may not be scalable to a large collection of
videos and associated parallel text. In this paper, we aim to
automatically align video frames with their corresponding
natural language expressions without any direct supervision.
We also jointly learn the correspondences between nouns in
the sentences and their referents in the video.

We focus on the task of learning from the recorded videos
of biological experiments performed in “wet laboratories”.
One of the key challenges in the biological sciences is to
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Figure 1: The proposed algorithm aligns protocol sentences
to corresponding video frames, and simultaneously matches
nouns in the sentences to corresponding blobs in video.

properly document experimental steps to ensure that results
can be replicated following these documentations. A recent
study reported that many major results in cancer biology
are not reproducible (Begley and Ellis 2012). In this study,
the researchers of Amgen Inc. attempted to replicate the re-
sults of 53 “landmark” cancer biology publications, and 43
of these 53 results could not be reproduced. Therefore, it is
crucial to investigate and improve the standard of these doc-
umentations. Typically, each wetlab experiment has a proto-
col written in natural language, describing the sequence of
steps necessary for that experiment. We take a set of such
protocols, and collect videos of different people following
these protocols and performing the experiments. Our initial
goal is to infer the correct alignment between the steps men-
tioned in the protocol and corresponding video segments in
which a person performs these steps (Figure 1). Eventually,
we are interested in identifying experimental anomalies by
using the aligned and segmented output of the system de-
scribed in this paper to learn detailed visual models of cor-
rectly performed activities.

Each video frame is segmented into a set of objects (re-
ferred to as ‘blobs’), and each blob is tracked over all the
frames in the video. We perform a hierarchical alignment,
where we align the protocol steps to their corresponding



video segments where the person executes that step. We also
simultaneously align nouns to their corresponding blobs.
The higher-level alignment is performed by a generative
Hidden Markov Model (HMM) (Rabiner 1989; Vogel, Ney,
and Tillmann 1996) that is similar to probabilistic dynamic
time warping. For the lower level alignment/matching of
blobs in the video to nouns, we use two different mod-
els: (1) IBM Model 1 (Brown et al. 1993) used in machine
translation and (2) a novel extension of IBM Model 1 ca-
pable of handling missing nouns that are not observed in
video. Our model is unsupervised and does not require any
classifier to recognize the blobs in the video frames. In-
stead we treat the mapping between the nouns and corre-
sponding video blobs as latent variables, and apply the Ex-
pectation Maximization (EM) algorithm (Dempster, Laird,
and Rubin 1977). The hierarchical alignment model used in
this paper is similar to the models for aligning parallel cor-
pora in machine translation (Brown, Lai, and Mercer 1991;
Moore 2002), that perform alignment both at the word level
and at the sentence level.

In this paper, we focus mainly on the alignment prob-
lem, and we do not perform semantic parsing of the sen-
tences (Branavan et al. 2009; Vogel and Jurafsky 2010;
Liang, Jordan, and Klein 2011). For alignment, we only
perform syntactic parsing, and learn the mapping between
nouns to blobs in the video frames. In the future, we plan to
extend our model to learn the perceptual mappings for verbs,
attributes, and other linguistic constituents.

Related Work
Grounded Language Acquisition
Learning the meaning representations of natural language
constructs is an important problem in computational se-
mantics. The meaning is typically represented either us-
ing symbolic logical forms (Zettlemoyer and Collins 2005;
2009) or by grounding them to entities, events, and relations
in a physical environment specified by a segmented image or
a video (Krishnamurthy and Kollar 2013; Tellex et al. 2013;
Matuszek et al. 2012; Tellex et al. 2011). In this paper, we
focus on the second type of meaning representation (known
as grounded language acquisition). Tellex et al. (2011)
proposed a probabilistic graphical model G3 (Generalized
Grounding Graphs) to infer the grounding of natural lan-
guage constituents, given a set of natural language com-
mands, each paired with the video example of the corre-
sponding command being carried out. Matuszek et al. (2012)
proposed a system that automatically learns the meaning of
different attributes. The system is first trained using a fully
supervised initial training stage, and learns a set of classi-
fiers to perceive the initial set of attributes from the image
features. Next, it incrementally learns the meaning of new
attributes in a semi-supervised manner. For the initial super-
vised stage, each sentence needs to be paired with the corre-
sponding image or video frame, and furthermore each indi-
vidual object and attribute in the image needs to be labeled
with its corresponding word or phrase in that sentence. Kr-
ishnamurthy et al. (2013) proposed the LSP (Logical Seman-
tics with Perception) model, which jointly learns the seman-

tic parsing of natural language sentences to logical forms
and also the perceptual classifiers to recognize these con-
cepts in the physical world. Both the LSP model (Krishna-
murthy and Kollar 2013) and theG3 graphical model (Tellex
et al. 2013) can treat the mapping between the language con-
stituents and corresponding physical entities/relations as la-
tent correspondence variables, and thus can avoid fully su-
pervised training. However, these algorithms still need to
know the exact pairing of the natural language sentences
with their corresponding examples (e.g., exact pairing of
natural language commands with corresponding video seg-
ments of a robot carrying out the command, the pairing of
database queries with the matching entities, etc.).

We propose a hierarchical alignment model that jointly
infers the pairing between natural language sentences and
the corresponding video frames and also learns the mapping
between the noun phrases to the physical entities present in
those video frames. Our model is similar to the hierarchi-
cal HMM model by Liang et al. (2009), applied for align-
ing natural language utterances to the corresponding fields
in database-like records. We model the correspondence be-
tween nouns and blobs by IBM Model 1 for word alignment.
We embed IBM Model 1 inside a Hidden Markov Model
(HMM) to exploit the temporal structures in the video and
corresponding text sequences. Our work is different from the
existing works on grounded language acquisition in the fol-
lowing ways: (1) Unlike the existing methods, our model
does not require any alignment or pairing between natu-
ral language sentences/commands and their corresponding
video segments, (2) we apply it to the complex biological
wetlab experiments which is an interesting and novel appli-
cation domain, and (3) we do not need to learn any percep-
tual classifiers for the objects in our model. The alignment
inferred by our model can be useful to generate training data
for perceptual classifiers.

Translating Image Blobs to Words
The IBM word alignment models for machine transla-
tion have previously been applied in the context of ob-
ject recognition (Duygulu et al. 2002; Duygulu, Batan, and
Forsyth 2006; Wachsmuth, Stevenson, and Dickinson 2003;
Jamieson et al. 2006). Duygulu et al. (2002; 2006) applied
IBM Model 1 and Model 2 to learn the correspondence be-
tween image regions and associated word tokens, given a
large parallel corpus of images, each annotated with a set
of key words. These images are first segmented into re-
gions, and the features extracted from these regions are clas-
sified into a set of K visual words using K-means clus-
tering. Finally, these visual words are aligned with their
corresponding English keywords using IBM word align-
ment models. Wachsmuth et al. (2003) and later Jamieson
et al. (2006) also applied Model 1 to align lower level image
features (e.g. local SIFT features, shape features, etc.), in-
stead of pre-segmented image regions. All these models rely
on image-level annotated training data. Recently, several
methods have been proposed for translating video content
to natural language description (Krishnamoorthy et al. 2013;
Yu and Siskind 2013; Rohrbach et al. 2013). These methods,
however, were trained using pre-segmented short clips (less



Protocol # Steps # Sentences Avg Video Length
CELL 13 34 7.78 minutes
LLGM 5 12 2.15 minutes
YPAD 8 25 4.14 minutes

Table 1: Statistics about the 3 protocols used in our experi-
ments.

than 5 seconds long), each paired with a single sentence. We
extend these models to longer videos and text sequences by
embedding the IBM 1 model inside an HMM, relaxing the
per-sentence annotation requirement. A similar problem has
been addressed by Cour et al. (2008) to automatically align
movie segments with the screen-play, but their solution re-
lies on precisely time-aligned closed captions, which is not
required for our method.

Video Segmentation and Object Tracking
For aligning text protocol with video, each blob needs to be
detected and tracked by the vision system. Our work is sim-
ilar to the work by Li et al. (2013) that detects hand-held
objects in kitchen environment via CRF and tracks them via
MeanShift tracker in RGB videos. We use RGB-D videos
to achieve better performance (Song and Xiao 2013). Lei et
al. (2012) proposed a system that tracks objects and hands
in 2D space using RGB-D descriptors. Our approach is dif-
ferent in that it works in 3D space. In addition, we consider
frequently present yet challenging transparent objects (e.g.,
glass bottles, jars, etc.), for which depth is usually zero and
therefore their 3D positions are intractable.

Problem Overview
The input to our system is a video recording of a wetlab
experiment accompanied with a protocol written in natural
language describing the actions to be performed in that ex-
periment. Our goal is to automatically align the video seg-
ments to the corresponding protocol sentences, and simulta-
neously learn the probabilities of matching each blob to the
nouns in these sentences. We track hands in the input video,
and consider only the blobs touched by hands.

Dataset Description
Our wetlab dataset has three different protocols: Cellobiose
M9 Media (CELL), LB Liquid Growth Media (LLGM), and
Yeast YPAD Media (YPAD). Each protocol consists of a se-
quence of instructions. Each sentence in the protocol either
describes a high-level step or a sub-step that needs to be per-
formed. Typically a step corresponds to one logical task unit
in the experiment. The properties of each of the three pro-
tocols are presented in Table 1. For each protocol, we col-
lect videos of several people executing the experiments. The
videos are captured using HD video camera and an ASUS
Xtion Pro RGB-Depth sensor.

Data Preprocessing
For detecting and tracking blobs in video, we first iden-
tify the workbench area in the 3D space by recovering the
point clouds using the depth image of the RGB-D camera.

(a) CELL protocol (b) LLGM protocol

Figure 2: Two examples of object detection in wet lab, for
two different experimental settings. Hands (blue) and ob-
jects (green) are above the table plane, and transparent ob-
jects are marked red.

Only areas above the workbench in the 3D space are con-
sidered as candidates for hands and objects. The scene is
first segmented using an adjacency matrix representing the
set of connected components that correspond to one or more
continuous objects. Two points (p1, p2) in the point cloud
are considered connected when their Euclidean distance is
less than a designated threshold dthresh. The cloud is fur-
ther over-segmented by color using a modified version of
the SLIC superpixel algorithm (Achanta et al. 2012). Then
the superpixels are grouped using a greedy approach by their
color and boundary map (Luo and Guo 2003). Features from
color and 3D shape are used for segmentation of different
objects, which are tracked using a 3D Kalman filter with
pre-trained Gaussian Mixture Appearance Models. The in-
teraction between hands and objects is inferred in 3D space.
The transparent objects are detected using their zero depth
property. We detect transparent objects in two stages. First,
we filter out as many false positives as possible in individ-
ual frames using several rules: (1) transparent objects should
either connect to the workbench or be connected by ob-
jects above the workbench, (2) small areas far away from
the hands are filtered out, because small areas not occluded
by hands are likely to be noise. In the second stage, we use
a Kalman filter to track candidate areas based on their 2D
position, size and speed. Noise areas with a short existence
duration are filtered out.

Next we preprocess the sentences in the protocol text. We
parse each sentence using the two-stage Charniak-Johnson
syntactic parser (Charniak and Johnson 2005). For each
noun phrases in the parse tree, we extract the head nouns
and ignore other nouns. For example, for the noun phrase
‘falcon tube’, we ignore the word ‘falcon’ and only use the
head noun ‘tube’. We also apply simple heuristic rules that
filter out spurious nouns that do not represent any object:
ignore noun phrases that are either (1) object of the verb
‘write’ or (2) immediately preceding the word ‘of’.

Challenges Faced
• Unmentioned objects: Some video segments have objects

that are not mentioned in the corresponding text proto-
cols. For example, protocol sentences like ‘write X on
the label” correspond to video segments where a person
is touching a pen, but there is no noun that corresponds



to the pen in the protocol. Similarly, there are video seg-
ments where user is holding a pipette, but the correspond-
ing sentence does not have the noun “pipette”, and instead
looks like “Aspirate X to Y”.

• Unobserved nouns: The syntactic parsing system extracts
some nouns that do not correspond to any objects/blobs
in video (e.g., ‘protocol’, ‘outside’, ‘anything’, etc.). The
alignment algorithm needs to be robust to these unob-
served nouns.

• Out of order execution: Sometimes the experimenter
touches objects out of order, mostly to set up the ingre-
dients before executing a high-level experiment step or to
clean up after a step.

• Object Detection: Thin objects like spatulas and plastic
boats are difficult to detect using the state of the art com-
puter vision algorithms. The tracking for several objects
was noisy, especially due to illumination variation that
confounded the appearance model.

Joint Alignment and Matching
Input Representation
The object detection and tracking system from the previ-
ous section identifies the objects touched by hands in each
video frame. The input video is split into small chunks,
each one second long. For each video chunk, we iden-
tify the set of blobs touched by the hands during that
time interval. We ignore the chunks over which no blob is
touched by the hands. Finally, we get a sequence of video
chunks F = [f (1), . . . , f (M)], where each chunk f (m) =

{f (m)
1 , . . . , f

(m)
J } is the set of blobs touched by the hands

during that time interval. We extract head nouns from each
of the protocol sentences, and represent the protocol text
as a sequence of sets E = [e(1), . . . , e(N)], where e(n) =

{e(n)1 , . . . , e
(n)
I } is the set of nouns in the nth sentence.

Proposed Model: HMM + IBM 1
Given the blobs fromM video chunks F = [f (1), . . . , f (M)],
and the nouns from N sentences E = [e(1), . . . , e(N)],
we want to infer the alignment between the video chunks
and sentences. For computational tractability, we allow each
video chunk to be aligned to only one of the sentences, but
multiple chunks can be aligned to the same sentence. Let
the alignment be aM1 = a1, a2, . . . , aM , where am = n
indicates that the mth video segment is aligned to the nth
sentence. We also simultaneously learn the matching proba-
bility table (T = p(f |e)), that refers to the probability that
the video object or blob f corresponds to the English noun e.
We treat these correspondences as latent variables, and infer
them using the EM framework.

We propose a hierarchical generative model to infer the
alignment and matching. First, we generate the video chunks
from the sentences using a Hidden Markov Model (HMM).
Each video chunk f (m) is generated from one of the sen-
tences denoted by am = n, where n ∈ {1, . . . , N}. Next,
we generate the blobs in f (m) from the nouns in e(n) using
IBM model 1. The alignment variable am is the hidden state
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Figure 3: The two versions of HMM transitions used in our
experiments.

formth time step in our HMM model. We use IBM Model 1
probabilities as emission probabilities. If the alignment state
for the mth video segment am = n, the emission proba-
bility is IBM Model 1 probability P(f (m)|e(n)) of aligning
f (m) with e(n).

Let VE be the noun vocabulary, i.e., the set of all the
unique nouns extracted from the entire text, and VF be
the set of all individual blobs in the entire video. The pa-
rameters in our model consist of a matching probability
table T = {p(f |e)}, representing the probability of ob-
serving the blob f given the noun e. The probability table
T provides soft matching probabilities between the blobs
and nouns. The probability of generating a set of blobs
f (m) = {f (m)

1 , . . . , f
(m)
J } from the set of nouns e(n) =

{e(n)1 , . . . , e
(n)
I } according to IBM Model 1 is:

P
(
f (m)|e(n)

)
=

ε

(I)J

J∏
j=1

I∑
i=1

p(f
(m)
j |e(n)i ) (1)

Following the Markov assumption, the hidden alignment
state am = n depends on the alignment state for the previous
video segment am−1 = n′. The state transition probability
P(am = n|am−1 = n′) is parametrized by the jump size
between adjacent alignment points:

P(am = n|am−1 = n′) = c(n− n′) (2)

where c(l) represents the probability of jumps of distance
l. To simplify the notation, we will refer to the transition
probabilities P(am = n|am−1 = n′) as P(n|n′). We exper-
iment with two versions of HMMs, that vary in the transi-
tions they are allowed to make (Figure 3). If am = n, the
HMM 1 model allows am+1 ∈ {n, n + 1}. The HMM 2
model is more flexible, and allows five possible transitions
(Figure 3(b)).

We aim to jointly learn the alignment aM1 and the match-
ing probabilities T given the input data. We apply the EM
algorithm for the learning task. The parameters in our model
are the matching probability matrix T and the jump proba-
bilities c, and the latent variables are aM1 .

• Initialize: initialize the probability table T = {p(f |e)}
uniformly, i.e., we set p(f |e) = 1/|VF | for all f ∈ VF
and e ∈ VE . We also initialize the jump probabilities uni-
formly.



• E-step: apply the forward-backward recursions. The ini-
tial state is a0 = 0. Let αm(n) be the forward probability,
βm(n) be the backward probability at mth video chunk
and state am = n.
– The forward recursion:

αm(n) =

 ∑
n′∈Pred(n)

αm−1(n
′)P(n|n′)


P
(
f (m)|e(n)

)
(3)

where Pred(n) is the set of predecessors of the state n.
– The backward recursion:

βm(n) =
∑

n′∈Succ(n)

βm+1(n
′)P(n′|n) P

(
f (m+1)|e(n

′)
)

(4)
where Succ(n) is the set of successors of the state n.

– The posterior probability of being at state am = n at
time step m, which is denoted by γm(n):

γm(n) =
αm(n) βm(n)∑
n′ αm(n′) βm(n′)

(5)

– The posterior probability of the state pair (am =
n, am+1 = n′) denoted by ξm(n, n′):

ξm(n, n′) =

αm(n) P(n′|n)P
(
f (m+1)|e(n′)

)
βm+1(n

′)∑
n′
∑

n αm(n) P(n′|n)P
(
f (m+1)|e(n′)

)
βm+1(n′)

(6)

– Finally, for each possible alignment pair (f (m), e(n)) in
our HMM model, we estimate the expected counts of
aligning a blob f (m)

j ∈ f (m) to a noun e(n)i ∈ e(n).

ECm,n(f
(m)
j , e

(n)
i ) =

p(f
(m)
j |e(n)i )∑

i p(f
(m)
j |e(n)i )

(7)

• M-step: we re-estimate the matching probabilities and
jump probabilities using the posterior probabilities γm(n)
and ξm(n, n′) estimated in E-step:

– Re-estimate matching probability table:

p(f |e) = ∑M
m=0

∑N
n=0 γm(n)ECm,n(f, e)∑

f

∑M
m=0

∑N
n=0 γm(n)ECm,n(f, e)

(8)

– Re-estimate jump probabilities:

c(l) =

∑M
m=0

∑
n,n′ ξm(n, n′) I[(n′ − n) = l]∑M
m=0

∑
n,n′ ξm(n, n′)

(9)

The computational complexity of each EM iteration is
O(MNIJ) for M video chunks, N sentences, at most I
nouns per a sentence, and at most J blobs per video chunk.

HMM 1 + HMM 2 + HMM 1 + HMM 2 +
IBM 1 IBM 1 Unobs Unobs

Anvil 41.09 39.73 47.94 47.94
Vision 28.76 28.76 26.02 30.13

Table 3: Average matching accuracy (% of objects correctly
paired with corresponding nouns) for both Anvil annotations
and automated computer vision tracking data.

HMM + IBM 1 + Unobserved Nouns
The text protocols contain nouns that are not observed in
the video. Additionally, the computer vision algorithms for
video segmentation and tracking often fail to identify small
and transparent objects (e.g., pipette, spatula, etc.). We ex-
tend IBM 1 model to explicitly model these unobserved
nouns. For each noun e ∈ e(n), we introduce a boolean la-
tent variable oe:

oe =

{
1, if e corresponds to a blob f ∈ f (m)

0, otherwise

For each noun e ∈ e(n), the generative process first samples
the latent observation variables oe, and then generates blobs
in f (m) only from the nouns for which oe = 1. We assume
that these oe variables are conditionally independent and fol-
low a Bernoulli distribution. The joint distribution is defined
as:

P
(
f (m),o(n)|e(n)

)
= P (o(n)|e(n))P

(
f (m)|o(n), e(n)

)
=

 ∏
e∈e(n)

P (oe)


 ε(∑

e∈e(n) oe
)J J∏

j=1

∑
e∈e(n),oe=1

p(f
(m)
j |e)

 . (10)

The emission probability is the marginal probability of
generating the set of blobs f (m) = {f (m)

1 , . . . , f
(m)
J } from

the set of nouns e(n) = {e(n)1 , . . . , e
(n)
I }:

P
(
f (m)|e(n)

)
=
∑
o(n)

P
(
f (m),o(n)|e(n)

)
(11)

The complexity of marginalizing over all possible values of
o(n) grows exponentially with the number of nouns in a sen-
tence. Since we typically have 4 or fewer nouns in each sen-
tence, we can exactly compute these probabilities.

The EM procedure for the new model remains similar,
with a few modifications. In the E-step, we estimate the
forward-backward probabilities using the same recursions,
but the emission probability P

(
f (m)|e(n)

)
is estimated us-

ing equation 11. We also estimate the expected counts of
observing each possible values o(n) for each alignment po-
sition am = n:

ECm,n(o
(n)) =

P
(
f (m),o(n)|e(n)

)∑
o(n) P

(
f (m),o(n)|e(n)

) (12)



Protocol Video ID HMM 1 + IBM 1 HMM 2 + IBM 1 HMM 1 + Unobs HMM 2 + Unobs Baseline
Anvil Vision Anvil Vision Anvil Vision Anvil Vision Anvil Vision

CELL video-1 74.25 32.73 78.27 33.33 88.93 39.34 87.12 49.25 48.89 40.84
video-2 76.31 52.70 85.54 52.70 81.30 52.70 88.53 52.70 49.38 24.32

LLGM video-1 68.64 78.78 68.64 78.78 68.64 78.78 68.64 81.81 65.25 59.09
video-2 70.25 61.33 70.25 30.67 67.77 30.67 68.59 30.67 86.78 58.67

YPAD video-1 90.1 84.31 90.10 91.20 90.1 90.2 90.1 89.21 80.73 39.21
video-2 94.53 70.0 93.80 70.0 94.53 70.0 92.70 70.7 72.27 61.42

Weighted Average 79.53 56.24 82.99 54.66 84.92 56.49 86.02 59.63 60.97 42.87

Table 2: Alignment accuracy (% of video chunks aligned to the correct protocol step) for both Anvil annotations and computer
vision tracking data. For weighted averaging, the accuracy for each video is weighted by the length of that video.

We also estimate the expected counts of observing each pair
(f, e) at each alignment position am = n and each possible
values of o(n). In the M-step, we re-estimate T and c by nor-
malizing the expected counts. Additionally, we re-estimate
the observation probabilities P(oe) for all e ∈ VE :

P(oe = 1) =∑M
j=0

∑N
n=0

∑
o(n):oe=1ECm,n(o

(n)) γm(n)∑M
j=0

∑N
n=0

∑
o(n) ECm,n(o(n)) γm(n)

(13)

The computational complexity of each EM iteration is
O(MN2IIJ).

Results and Discussions
We perform experiments on six wetlab videos (three pro-
tocols, two videos per protocol). To compare the errors in-
troduced by our alignment algorithm and automated video
segmentation and tracking systems, we evaluate alignment
and matching accuracy both using automatically segmented
videos and hand annotated videos. We manually annotate
each of the videos to specify the objects touched by the
hands using the video annotation tool Anvil (Kipp 2012).
We experiment with two different types of HMM transi-
tion models (Figure 3) and two different emission models
(IBM model 1 and its extension for unobserved nouns), and
thus obtain 4 different versions of our alignment algorithm.
The alignment accuracy is measured by the percentage of
video chunks aligned to the correct protocol step. We com-
pare our models with a simple baseline, where we uniformly
distribute the video chunks among the sentences such that
each sentence is aligned to an equal number of chunks. The
alignment results (Table 2) show that our algorithm outper-
forms the uniform baseline, both on Anvil annotations and
on the output of the computer vision system. Our best re-
sults are obtained by the “HMM 2 + Unobserved nouns”
model, that explicitly models unobserved nouns. The HMM
2 model performed better than HMM 1 on average, as it al-
lows touching objects out of protocol order. The accuracy is
relatively lower on the automated computer vision data than
that for Anvil data, particularly for small and thin objects
(e.g. spatula, plastic boat. etc.), which are not tracked reli-
ably by the vision system. On average, 60.9% of the blobs
were detected and tracked reliably.

The proposed algorithm also works well in matching
video blobs to nouns (Table 3). We examined the mistakes
made by the matching algorithm, and many of the mistakes
looked reasonable. For example, the video blob for the pen
was mapped to the word ‘label’ in protocol, because the
pen is used to write on the label and there is no word for
pen in the protocol. Similarly the blob for syringe is often
mapped to ‘filter’ of the syringe, and the blob for water jug
got mapped to the word ‘sink’ from where water should be
collected.

Conclusion and Future Work

In this paper, we propose a novel unsupervised learning al-
gorithm for jointly aligning natural language instructions to
video segments and for matching individual nouns in those
instructions to corresponding video objects. We show that
the proposed algorithm works well for complex videos of
biological wetlab experiments, and can infer the alignment
by exploiting the step-by-step structure of these videos. The
proposed video alignment algorithm is a general framework,
which can be applied to other types of video/text pairs that
have a similar step-by-step structure (e.g., cooking videos
paired with recipes, educational videos of scientific experi-
ments paired with instructions, movies paired with screen-
plays, etc.).

There are several scopes of future improvements. Cur-
rently we use only nouns, and ignore verbs and relations
in protocol text. Some of the verbs correspond to distinct
hand movement patterns (e.g., mix, aspirate, pour, write,
etc.), and often co-occur with particular objects in our videos
(e.g., ‘write’ often co-occurs with a pen, ‘aspirate’ co-occurs
with a pipette, etc.). We would like to learn perceptual fea-
tures and hand movement patterns associated with different
verbs and infer the relations between these verbs and differ-
ent video objects. Sometimes the protocol does not explic-
itly mention some words, but they can be inferred from the
context. For example, we have instruction sequences like:
“Label the bottle. Add 40 mL DI water.”. Although the sec-
ond sentence does not explicitly mention the word ‘bottle’,
it is apparent that water needs to be added to the bottle.
Applying context-dependent semantic parsing (Zettlemoyer
and Collins 2009) may allow us to infer such implicit words
and improve the quality of alignment and matching.
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