
Bayesian Learning of a Tree Substitution Grammar

Matt Post and Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

Tree substitution grammars (TSGs) of-
fer many advantages over context-free
grammars (CFGs), but are hard to learn.
Past approaches have resorted to heuris-
tics. In this paper, we learn a TSG us-
ing Gibbs sampling with a nonparamet-
ric prior to control subtree size. The
learned grammars perform significantly
better than heuristically extracted ones on
parsing accuracy.

1 Introduction

Tree substition grammars (TSGs) have potential
advantages over regular context-free grammars
(CFGs), but there is no obvious way to learn these
grammars. In particular, learning procedures are
not able to take direct advantage of manually an-
notated corpora like the Penn Treebank, which are
not marked for derivations and thus assume a stan-
dard CFG. Since different TSG derivations can
produce the same parse tree, learning procedures
must guess the derivations, the number of which is
exponential in the tree size. This compels heuristic
methods of subtree extraction, or maximum like-
lihood estimators which tend to extract large sub-
trees that overfit the training data.

These problems are common in natural lan-
guage processing tasks that search for a hid-
den segmentation. Recently, many groups have
had success using Gibbs sampling to address the
complexity issue and nonparametric priors to ad-
dress the overfitting problem (DeNero et al., 2008;
Goldwater et al., 2009). In this paper we apply
these techniques to learn a tree substitution gram-
mar, evaluate it on the Wall Street Journal parsing
task, and compare it to previous work.

2 Model

2.1 Tree substitution grammars

TSGs extend CFGs (and their probabilistic coun-
terparts, which concern us here) by allowing non-
terminals to be rewritten as subtrees of arbitrary
size. Although nonterminal rewrites are still
context-free, in practice TSGs can loosen the in-
dependence assumptions of CFGs because larger
rules capture more context. This is simpler than
the complex independence and backoff decisions
of Markovized grammars. Furthermore, subtrees
with terminal symbols can be viewed as learn-
ing dependencies among the words in the subtree,
obviating the need for the manual specification
(Magerman, 1995) or automatic inference (Chiang
and Bikel, 2002) of lexical dependencies.

Following standard notation for PCFGs, the
probability of a derivationd in the grammar is
given as

Pr(d) =
∏

r∈d

Pr(r)

where eachr is a rule used in the derivation. Un-
der a regular CFG, each parse tree uniquely idenfi-
fies a derivation. In contrast, multiple derivations
in a TSG can produce the same parse; obtaining
the parse probability requires a summation over
all derivations that could have produced it. This
disconnect between parses and derivations com-
plicates both inference and learning. The infer-
ence (parsing) task for TSGs is NP-hard (Sima’an,
1996), and in practice the most probable parse is
approximated (1) by sampling from the derivation
forest or (2) from the topk derivations.

Grammar learning is more difficult as well.
CFGs are usually trained on treebanks, especially
the Wall Street Journal (WSJ) portion of the Penn
Treebank. Once the model is defined, relevant

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14

subtree height

Figure 1: Subtree count (thousands) across heights
for the “all subtrees” grammar (�) and the supe-
rior “minimal subset” (�) from Bod (2001).

events can simply be counted in the training data.
In contrast, there are no treebanks annotated with
TSG derivations, and a treebank parse tree ofn
nodes is ambiguous among2n possible deriva-
tions. One solution would be to manually annotate
a treebank with TSG derivations, but in addition
to being expensive, this task requires one to know
what the grammar actually is. Part of the thinking
motivating TSGs is to let the data determine the
best set of subtrees.

One approach to grammar-learning is Data-
Oriented Parsing (DOP), whose strategy is to sim-
ply take all subtrees in the training data as the
grammar (Bod, 1993). Bod (2001) did this, ap-
proximating “all subtrees” by extracting from the
Treebank 400K random subtrees for each subtree
height ranging from two to fourteen, and com-
pared the performance of that grammar to that
of a heuristically pruned “minimal subset” of it.
The latter’s performance was quite good, achiev-
ing 90.8% F1 score1 on section 23 of the WSJ.

This approach is unsatisfying in some ways,
however. Instead of heuristic extraction we would
prefer a model that explained the subtrees found
in the grammar. Furthermore, it seems unlikely
that subtrees with ten or so lexical items will be
useful on average at test time (Bod did not report
how often larger trees are used, but did report that
including subtrees with up to twelve lexical items
improved parser performance). We expect there to
be fewer large subtrees than small ones. Repeat-
ing Bod’s grammar extraction experiment, this is
indeed what we find when comparing these two
grammars (Figure 1).

In summary, we would like a principled (model-
based) means of determining from the data which

1The harmonic mean of precision and recall:F1 = 2PR

P+R
.

set of subtrees should be added to our grammar,
and we would like to do so in a manner that prefers
smaller subtrees but permits larger ones if the data
warrants it. This type of requirement is common in
NLP tasks that require searching for a hidden seg-
mentation, and in the following sections we apply
it to learning a TSG from the Penn Treebank.

2.2 Collapsed Gibbs sampling with a DP
prior2

For an excellent introduction to collapsed Gibbs
sampling with a DP prior, we refer the reader to
Appendix A of Goldwater et al. (2009), which we
follow closely here. Our training data is a set of
parse treesT that we assume was produced by an
unknown TSGg with probabilityPr(T |g). Using
Bayes’ rule, we can compute the probability of a
particular hypothesized grammar as

Pr(g | T) =
Pr(T | g) Pr(g)

Pr(T)

Pr(g) is a distribution over grammars that ex-
presses oura priori preference forg. We use a set
of Dirichlet Process (DP) priors (Ferguson, 1973),
one for each nonterminalX ∈ N , the set of non-
terminals in the grammar. A sample from a DP
is a distribution over events in an infinite sample
space (in our case, potential subtrees in a TSG)
which takes two parameters, a base measure and a
concentration parameter:

gX ∼ DP (GX , α)

GX(t) = Pr$(|t|; p$)
∏

r∈t

PrMLE(r)

The base measureGX defines the probability of a
subtreet as the product of the PCFG rulesr ∈ t
that constitute it and a geometric distributionPr$
over the number of those rules, thus encoding a
preference for smaller subtrees.3 The parameterα
contributes to the probability that previously un-
seen subtrees will be sampled. All DPs share pa-
rametersp$ and α. An entire grammar is then
given asg = {gX : X ∈ N}. We emphasize that
no head information is used by the sampler.

Rather than explicitly consider each segmen-
tation of the parse trees (which would define a
TSG and its associated parameters), we use a col-
lapsed Gibbs sampler to integrate over all possi-

2Cohn et al. (2009) and O’Donnell et al. (2009) indepen-
dently developed similar models.

3GX(t) = 0 unless root(t) = X.

S1

NP

NN

ADVP

RB VBZ S2

NP

PRP

you

VP

VB

quit

Someone always makes

VP

Figure 2: Depiction ofsub(S2) and sub(S2).
Highlighted subtrees correspond with our spinal
extraction heuristic (§3). Circles denote nodes
whose flag=1.

ble grammars and sample directly from the poste-
rior. This is based on the Chinese Restaurant Pro-
cess (CRP) representation of the DP. The Gibbs
sampler is an iterative procedure. At initialization,
each parse tree in the corpus is annotated with a
specific derivation by marking each node in the
tree with a binary flag. This flag indicates whether
the subtree rooted at that node (a height one CFG
rule, at minimum) is part of the subtree contain-
ing its parent. The Gibbs sampler considers ev-
ery non-terminal, non-root nodec of each parse
tree in turn, freezing the rest of the training data
and randomly choosing whether to join the sub-
trees abovec and rooted atc (outcomeh1) or to
split them (outcomeh2) according to the probabil-
ity ratio φ(h1)/(φ(h1) + φ(h2)), whereφ assigns
a probability to each of the outcomes (Figure 2).

Let sub(n) denote the subtree above and includ-
ing noden andsub(n) the subtree rooted atn; ◦ is
a binary operator that forms a single subtree from
two adjacent ones. The outcome probabilities are:

φ(h1) = θ(t)

φ(h2) = θ(sub(c)) · θ(sub(c))

wheret = sub(c) ◦ sub(c). Under the CRP, the
subtree probabilityθ(t) is a function of the current
state of the rest of the training corpus, the appro-
priate base measureGroot(t), and the concentra-
tion parameterα:

θ(t) =
countzt

(t) + αGroot(t)(t)

|zt| + α

wherezt is the multiset of subtrees in the frozen
portion of the training corpus sharing the same
root ast, andcountzt

(t) is the count of subtree
t among them.

3 Experiments

3.1 Setup

We used the standard split for the Wall Street Jour-
nal portion of the Treebank, training on sections 2
to 21, and reporting results on sentences with no
more than forty words from section 23.

We compare with three other grammars.

• A standard Treebank PCFG.

• A “spinal” TSG, produced by extractingn
lexicalized subtrees from each lengthn sen-
tence in the training data. Each subtree is de-
fined as the sequence of CFG rules from leaf
upward all sharing a head, according to the
Magerman head-selection rules. We detach
the top-level unary rule, and add in counts
from the Treebank CFG rules.

• An in-house version of the heuristic “mini-
mal subset” grammar of Bod (2001).4

We note two differences in our work that ex-
plain the large difference in scores for the minimal
grammar from those reported by Bod: (1) we did
not implement the smoothed “mismatch parsing”,
which permits lexical leaves of subtrees to act as
wildcards, and (2) we approximate the most prob-
able parse with the top single derivation instead of
the top 1,000.

Rule probabilities for all grammars were set
with relative frequency. The Gibbs sampler was
initialized with the spinal grammar derivations.
We construct sampled grammars in two ways: by
summing all subtree counts from the derivation
states of the firsti sampling iterations together
with counts from the Treebank CFG rules (de-
noted(α, p$,≤i)), and by taking the counts only
from iterationi (denoted(α, p$, i)).

Our standard CKY parser and Gibbs sampler
were both written in Perl. TSG subtrees were flat-
tened to CFG rules and reconstructed afterward,
with identical mappings favoring the most proba-
ble rule. For pruning, we binned nonterminals ac-
cording to input span and degree of binarization,
keeping the ten highest scoring items in each bin.

3.2 Results

Table 1 contains parser scores. The spinal TSG
outperforms a standard unlexicalized PCFG and

4All rules of height one, plus 400K subtrees sampled at
each heighth, 2 ≤ h ≤ 14, minus unlexicalized subtrees of
h > 6 and lexicalized subtrees with more than twelve words.

grammar size LP LR F1

PCFG 46K 75.37 70.05 72.61
spinal 190K 80.30 78.10 79.18
minimal subset 2.56M 76.40 78.29 77.33
(10, 0.7, 100) 62K 81.48 81.03 81.25
(10, 0.8, 100) 61K 81.23 80.79 81.00
(10, 0.9, 100) 61K 82.07 81.17 81.61
(100, 0.7, 100) 64K 81.23 80.98 81.10
(100, 0.8, 100) 63K 82.13 81.36 81.74
(100, 0.9, 100) 62K 82.11 81.20 81.65
(100, 0.7,≤100) 798K 82.38 82.27 82.32
(100, 0.8,≤100) 506K 82.27 81.95 82.10
(100, 0.9,≤100) 290K 82.64 82.09 82.36
(100, 0.7, 500) 61K 81.95 81.76 81.85
(100, 0.8, 500) 60K 82.73 82.21 82.46
(100, 0.9, 500) 59K 82.57 81.53 82.04
(100, 0.7,≤500) 2.05M 82.81 82.01 82.40
(100, 0.8,≤500) 1.13M 83.06 82.10 82.57
(100, 0.9,≤500) 528K 83.17 81.91 82.53

Table 1: Labeled precision, recall, and F1 on
WSJ§23.

the significantly larger “minimal subset” grammar.
The sampled grammars outperform all of them.
Nearly all of the rules of the best single iteration
sampled grammar(100, 0.8, 500) are lexicalized
(50,820 of 60,633), and almost half of them have
a height greater than one (27,328). Constructing
sampled grammars by summing across iterations
improved over this in all cases, but at the expense
of a much larger grammar.

Figure 3 shows a histogram of subtree size taken
from the counts of the subtrees (by token, not type)
actually used in parsing WSJ§23. Parsing with
the “minimal subset” grammar uses highly lexi-
calized subtrees, but they do not improve accuracy.
We examined sentence-level F1 scores and found
that the use of larger subtrees did correlate with
accuracy; however, the low overall accuracy (and
the fact that there are so many of these large sub-
trees available in the grammar) suggests that such
rules are overfit. In contrast, the histogram of sub-
tree sizes used in parsing with the sampled gram-
mar matches the shape of the histogram from the
grammar itself. Gibbs sampling with a DP prior
chooses smaller but more general rules.

4 Summary

Collapsed Gibbs sampling with a DP prior fits
nicely with the task of learning a TSG. The sam-
pled grammars are model-based, are simple to
specify and extract, and take the expected shape

100

101

102

103

104

105

106

 0 2 4 6 8 10 12

number of words in subtree’s frontier

(100,0.8,500), actual grammar
(100,0.8,500), used parsing WSJ23

minimal, actual grammar
minimal, used parsing WSJ23

Figure 3: Histogram of subtrees sizes used in pars-
ing WSJ§23 (filled points), as well as from the
grammars themselves (outlined points).

over subtree size. They substantially outperform
heuristically extracted grammars from previous
work as well as our novel spinal grammar, and can
do so with many fewer rules.

Acknowledgments This work was supported by
NSF grants IIS-0546554 and ITR-0428020.

References

Rens Bod. 1993. Using an annotated corpus as a
stochastic grammar. InProc. ACL.

Rens Bod. 2001. What is the minimal set of fragments
that achieves maximal parse accuracy. InProc. ACL.

David Chiang and Daniel M. Bikel. 2002. Recovering
latent information in treebanks. InCOLING.

Trevor Cohn, Sharon Goldwater, and Phil Blun-
som. 2009. Inducing compact but accurate tree-
substitution grammars. InProc. NAACL.

John DeNero, Alexandre Bouchard-Côté, and Dan
Klein. 2008. Sampling alignment structure under
a Bayesian translation model. InEMNLP.

Thomas S. Ferguson. 1973. A Bayesian analysis of
some nonparametric problems.Annals of Mathe-
matical Statistics, 1(2):209–230.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word
segmentation: Exploring the effects of context.
Cognition.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. InProc. ACL.

T.J. O’Donnell, N.D. Goodman, J. Snedeker, and J.B.
Tenenbaum. 2009. Computation and reuse in lan-
guage. InProc. Cognitive Science Society.

Khalil Sima’an. 1996. Computational complexity of
probabilistic disambiguation by means of tree gram-
mars. InCOLING.

