
Parsers as language models for statistical machine translation

Matt Post and Daniel Gildea
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

Most work in syntax-based machine trans-
lation has been in translation modeling, but
there are many reasons why we may instead
want to focus on the language model. We
experiment with parsers as language models
for machine translation in a simple translation
model. This approach demands much more
of the language models, allowing us to iso-
late their strengths and weaknesses. We find
that unmodified parsers do not improve BLEU
scores over ngram language models, and pro-
vide an analysis of their strengths and weak-
nesses.

1 Introduction

In the past few years there has been a burgeoning in-
terest in syntax-based approaches to statistical ma-
chine translation. Most of this effort has been di-
rected at the translation model rather than the lan-
guage model; however, the level of syntactic diver-
gence in parallel text makes it difficult to reliably
learn syntax-based translation rules. Focusing on
syntax-based approaches within the language model
might be a more direct way to address the poor
grammatically of most machine translation output.

In previous work on syntax-based language mod-
eling for machine translation, Wu and Wong (1998)
included the score of an unlexicalized probabilis-
tic context-free grammar (PCFG) in an ITG frame-
work. Charniak et al. (2003) rescored a tree-to-
string translation forest with a lexicalized parser
and found more grammatical output despite a lower
BLEU score (compared to an ngram version). More
recently, Shen et al. (2008) used a trigram depen-
dency model, with quite good results. Common to

all of these approaches, though, is that target-side
syntax is coupled with the translation channel.

This paper is distinct from previous work in that
we decouple the structure of the target language tree
from that of the synchronous grammar tree. Instead
of extracting fragments of parse tree along with the
phrase table and learning syntax-motivated reorder-
ings, we start with simple phrase pairs and build the
target-language structure at decoding time. We com-
pare two syntax-based language models in the con-
text of a fairly simple syntactic translation model, as
a means of isolating the contributions and potential
of these language models. The first is the statistical
parser of Collins (1997) (Model 1). The second is
based on the dependency parser of Klein and Man-
ning (2004). Our translation model is a generic bi-
nary bracketing transduction grammar (Wu, 1997),
whose main purpose is to restrict the alignment
space to something that can be explored in polyno-
mial time.

2 Motivation

From a grammatical standpoint, the output of most
machine translation systems is very poor. Part of
the reason may be that most systems do not incor-
porate syntax-based language models. The nominal
task of the language model is to guide the search
(decoding) procedure towards grammatical output,
yet most systems use ngrams, which do not model
sentence structure and cannot handle long-distance
dependencies.

There are a number of reasons that researchers
have stuck with ngrams. They work well, are easy
to train, require no manual annotation, and are well-
understood, with a long history in the speech recog-



nition community. Furthermore, the distinction be-
tween the duties of the language and translation
models is somewhat dubious; the noisy-channel ap-
proach to MT permits a decomposition into these
two models, but modern log-linear systems use
many different component models with overlapping
responsibilities. Most recent syntax-based systems
put much of what might be considered the language
model’s responsibility into the translation model,
by learning translation rules that produce structured
target-language output from (flat) input phrases. An
example is Galley et al. (2006), in which target lan-
guage structures are linguistically motivated tree-
bank parse fragments with an extended domain of
locality, allowing, for example, a phrasal translation
pair to specify for (optionally lexicalized) argument
structure. In a different approach, Chiang (2007)
used a generic (linguistically uninformed) gram-
mar whose translation rules permitted lexicalized re-
orderings between the source and target languages.
More recently, Shen et al. (2008) extended Chiang’s
system to learn pieces of dependency structure along
with the rules.

These approaches (summarized in Figure 1) have
shown significant progress, but there are reasons
why we might want to construct target-side syntax
independent of the translation channel. One problem
faced by tree-to-string systems is syntactic diver-
gence. Translation and its evaluation are not well-
defined tasks; at a high level, we can make gram-
matical statements about languages, such as the ob-
servation that English is SVO and Japanese is SOV1.
However, these general statements are not necessar-
ily true of a particular sentence pair. Two sentences
expressing the same semantics need not have corre-
sponding structure, so it may be problematic to ex-
tract translation rules from them. Syntactic diver-
gence is an even greater problem for language pairs
involving a language with freer word order, which is
one explanation for why syntax-based methods have
done best when translating into English from fixed
word-order languages like Chinese and French.

A second, related problem with syntax-based
translation rules is reordering. While in theory using
context (words in the Chiang model, and category
combinations in Galley et al.’s) to license reorder-

1S = subject, O = object, V = verb.

TM LM: syntax LM: ngram
xRS Marcu et al. (2006) Galley et al. (2006) (*)
Hiero Shen et al. (2008) Chiang (2005)
BTG This paper Wu (1996)

Figure 1: Use of syntax in various systems. Galley et al.
(2006) used no language model.

ing can result in more informed reordering, it might
also result in worse reordering or less reordering if
the extracted rules are noisy or not general enough
for the test data. A careful study of the various re-
ordering models would be useful here, but empirical
evaluation is another tool available to us.

Finally, the problem is exacerbated by the depen-
dence of structured translation rules on automati-
cally parsed and automatically aligned data, which
are noisy and ambiguous. Parsing accuracy, for ex-
ample, is between ninety to ninenty-five per cent (for
English), and parsing models do not generalize well
across domains.

To that end, in this paper we examine two syntax-
based language models in a weak translation model.
Our approach decouples target-language trees from
the translation rules, providing the language model
with more freedom to express itself, and permitting
us to isolate the strengths and weaknesses of the
parser in selecting MT output.

3 Description

In this section we describe the parser models and
the search algorithm. Our translation model is
Dekai Wu’s binary bracketing transduction grammar
(BTG) with a single nonterminal X and rule weights
learned automatically from Chinese-English data us-
ing EM. We extended our BTG implementation to
use phrase pairs at the leaves instead of just word
pairs. Our translation table is a joint distribution of
Chinese / English phrase pairs of no more than seven
words on either side.

Motivating our choice of BTG is a desire to as-
sume as little about the space of reorderings as pos-
sible, and yet to have a principled alignment space
that can be explored in polynomial time. Welling-
ton et al. (2006) showed that word-to-word BTG
can handle 95% of the alignments in their test
data. Discontiguous alignments over small dis-
tances can be learned by memorizing the whole set



of phrasal pairs. One example is the well-known
French/English translation pair{ne X pas/ do not
X}. BTG cannot handle this alignment, but it can
compensate by learning instantiations of the phrase
pair for different values of X.

It is worth pointing out explicitly that BTG in this
form provides very little information to the trans-
lation process. In contrast to channel-rich models
discussed earlier, BTG has only one parameter gov-
erning reordering, which expresses a preference for
the straight binary rule over the inverted binary rule.
This distortion model is even less informative than
that of phrase-based systems such as Koehn et al.
(2003)2. An uninformative translation model allows
us to isolate the influence of the language model in
assembling the translation hypotheses.

3.1 Parsing models

The task of a statistical parser is to assign proba-
bilities to parse trees, that is, to provide a model of
Pr(π|e), whereπ is a parse tree ande is an En-
glish sentence. Typically parsers are used to find
the best parse,π∗, for a fixed input sentencee,
whereπ∗ = argmaxπ Pr(π|e). Many parsers de-
fine generative models which assign joint probabili-
tiesPr(π, e) to a (parse, sentence) pair, making use
of the observation that

argmax
π

Pr(π|e) = argmax
π

Pr(π, e)

A language model assigns probabilitiesPr(e) to a
sentencee in some language (in this paper, English).
We can thus use a generative parser as a language
model by marginalizing over all parse trees whose
yield is our English sentence, computingPrLM(e) =∑

π
Pr(π, e). In practice, we approximate the sum

over all parses with the most probable parse, so that
PrLM(e) ∝ maxπ Pr(π, e).

3.1.1 Collins Model 1

We chose Collins Model 1 as a natural starting
point for experimenting with language models. It is

2While in theory phrase-based systems should permit any
reordering of the phrases between the source and target lan-
guage sentence, many phrase-based systems turn off reorder-
ing entirely, or permit only position swaps between adjacent
phrases. With these heuristics enabled, the set of alignments
permitted is a strict subset of those attainable with BTG.

not too difficult to implement and train, and its ba-
sic features – lexicalization and rule markovization
– are at the core of the best generative parsers.

The exact model we used is the three-level back-
off model given in Table 7.1 of Collins (1999), to-
gether with special handling of punctuation and con-
juctions. This model comprises three distributions,
one each for assigning probabilities to (a) head la-
bels, (b) sibling labels and head tags, and (c) sibling
head words.

3.1.2 Dependency parser

One potential problem with the use of the Collins
parser is that it posits a great deal of hidden struc-
ture. The Treebank grammar, or the model param-
eterization used in the Collins parser, is not neces-
sarily the most useful for machine translation; in
fact, many researchers have shown that the tree-
bank grammar isn’t even the best choice for build-
ing parsers that are evaluated on their ability to re-
cover treebank structure (Klein and Manning, 2003;
Matsuzaki et al., 2005; Petrov and Klein, 2007). It
stands to reason that a different grammar might do
better as a language model for MT.

To explore this, we evaluated the dependency
model of Klein and Manning (2004). This model
imagines the generative process as adding left and
right arguments to a lexical head word until a de-
cision to stop is made, and then recursing on each
of those arguments. We changed the model to use
word-based (instead of tag-based) parameters, and
backed off to unigram probabilities for the sibling
distributions (we also ignored the constituent con-
text model described in that paper).

3.2 Decoding with parsers

Our algorithm for decoding with parsers as language
models is based on the algorithm for decoding with
ngram language models, described in Wu (1997).
That algorithm builds a dynamic programming chart
in a bottom-up manner. Cells in the chart take the
form of [X, s, t, el, er], whereX is the BTG non-
terminal over span(s, t) of the input, andel, er ∈
E∗ (whereE is the target language vocabulary) are
target-language boundary words which permit the
ngram language model probability to be multiplied
in when cells are combined.

In our algorithm, the dynamic programming state



1: function DECODE(input sentence:c = c0..T )
2: for span(s, t) of c in bottom-up orderdo
3: for phrasal translatione of cs..t do
4: F ← parse forest overe
5: add[s, t,F ] to the chart

6: for span(s, t) of c in bottom-up orderdo
7: for split pointS, s < S < t do
8: for cell [s, S,F1] in (s, S) do
9: for cell [S, t,F2] in (S, t) do

10: for BTG ruler do
11: if r.invertedthen
12: F ← PARSE(F2,F1)
13: else
14: F ← PARSE(F1,F2)

15: add[s, t,F ] to the chart

16: return best cell in[0, T ]

17: function PARSE(forestF1, forestF2)
18: F .width←F1.width +F2.width
19: F .lchild = F1

20: F .rchild = F2

21: for span(u, v), 0 ≤ u < v ≤ F .width do
22: if INTERSECTS(u, v,F1.width) then
23: for split pointU, u < U < vt do
24: (FL, uL, vL) = CHART(F , u, U )
25: (FR, uR, vR) = CHART(F , U, v)
26: for edgee1 in (uL, vL) of FL do
27: for edge e2 in (uR, vR) of
FR do

28: parse with target grammar
29: put new edges inF

30: return F
31: function CHART(forestF , u, v)
32: if F .lchild 6= NULL then
33: U ←F .width
34: if U ≥ v then
35: return CHART(F .lchild, u, v)
36: else if U ≤ u then
37: return CHART(F .rchild,u− U, v −

U )

38: return (F , u, v)

39: function INTERSECTS(u, v, U )
40: if U ≤ u or U ≥ v then return false
41: return true

Figure 2: Algorithm.

takes the form[s, t,F ]3, whereF is the parse for-
est over the target language side. Using the actual
forest as part of the dynamic programming state al-
lows us to break the isomorphism between the syn-
chronous and target-side grammars that is present
in earlier syntax-based language modeling attempts
(e.g., Charniak et al. (2003)). The algorithm, listed
in Figure 2, works in the following manner. The in-
put to the algorithm is a source-language sentencec

of lengthT . We writecs..t to denote wordss + 1..t

in this sentence4. For each phrasecs..t on the input
side, we consider some fixed numberµ of phrasal
translationse. Each of these phrases is parsed with
the target-language grammar, and the parse forest
over the phrase becomes part of a new cell, which
we place in the chart. The chart is thus seeded with
no more thanµT 2 cells.

Decoding proceeds by combining smaller cells to
form larger ones. Our grammar has only two rules:
the straight rule, and the inverted rule. To combine
two cells[s, S,F1] and[S, t,F2], we place the parse
forestsF1 andF2 side by side in straight or inverted
order, according to the rule under consideration, cre-
ating a new (incomplete) forestF . We then com-
plete this parse forest with the target language gram-
mar using the CYK algorithm. One important con-
sideration is that we only consider spans of that for-
est that cross the boundary position betweenF1 and
F2, so as to avoid redundant parsing. All new edges
formed are added toF .

Note that merging forests in this manner results
in an exponential waste of space, because lower
forests are repeatedly copied and recopied higher
and higher in the synchronous grammar tree. To
avoid this, instead of actually copyingF1 andF2 to
F , we maintain backpointers to the forests, and in-
troduce a level of indirection. The CHART() method
takes a starting forest and a target-language span
(u, v), traversing its backpointers until it finds the
chart from which edges over that span originated.

As an example of how the grammar structures are
decoupled, consider decoding the Chinese sentence
using the Collins parser language model:

0预计 1听 2证 3会 4将 5进行 6两天 7 . 8

3Our synchronous grammar has only one nonterminal, so we
will omit the X for notational convenience.

4Indices denote positions between words.



meaningIt is expected that the hearing will last
for two days. Figure 3 represents one path through
the search algorithm. When synchronous parsing is
complete, each cell over(0, T ) contains a complete
parse forest over the target language side, like the
one shown. From this forest, any structure over the
target language can be extracted, regardless of the
form of the synchronous grammar tree that produced
it (which is monotonic in this example).

I t i s e s t . t h a t t h e h e a r i n g w i l l l a s t f o r t w o d a y s� � 听 � 会 将 � � 两天
Figure 3: One path through the search algorithm. At
the bottom of the tree are phrasal translations together
with their parse forests. Darkened nodes represent con-
stituents over those spans (the forest has been simplified
for presentation purposes, as the actual forest would have
many target-grammar nonterminals over each span). The
dashed lines denote the order in which the cells are com-
bined; each application of a binary synchronous grammar
rule concatenates two forests and produces a new set of
edges that complete the forest.

3.3 Computational complexity

Searching for the best sentence under a CFG-based
language model and a CFG-based translation model
is an instance of the CFG intersection problem,
which is undecidable in general (Hopcroft and Ull-
man, 1979). However, the nature of the intersection
problem handled by our algorithm is somewhat eas-
ier, because the CFG derived from the synchronous
grammar in our situation is non-recursive. This
grammar is formed in the following manner on a
per-sentence basis from the dynamic programming
chart built from the synchronous grammarG and the
source language sentencec1..T . Each cell[X, s, t]
in this chart was built from smaller cells[Y, s, S]
and [Z, S, t] with ITG rule X → [Y Z] ∈ G;
from each of these, we will have a rule of the form

sXt → sYS SZt. Although an ITG grammar can
be recursive, rules formed from the chart in this
manner are nonrecursive because we disallow inser-
tions, meaning that each rule must consume part of
the input. Unfortunately, even the problem of find-
ing a string in the intersection of two non-recursive
context-free grammars (or one non-recursive and
one recursive grammar, as in our case) is PSPACE-
complete (Nederhof and Satta, 2004), making it un-
likely that an efficient algorithm exists for finding
the optimal translation under our model. Takingµ

again to be the number of phrasal translation can-
didates considered for each span of the input, the
actual complexity of the algorithm in Figure 2 is
O(T 3µ2T P (T )). TheT 3 term is the time required
to enumerate the spans and split points of the input,
the second term is the number of target-language
forest merges (µ · µ squared repeatedly to theO(T )
height of a binary tree), andP (T ) is the complexity
of parsing in the target language grammar.

3.4 Scoring and pruning

It is clear from the complexity results that the search
space for our decoder is prohibitively large. In light
of this, we experimented extensively with pruning.
To begin with, we use a two-pass coarse-to-fine ap-
proach. For the coarse pass, we built a chart with a
bigram language model and computed the inside and
outside probabilities for each cell in that chart. In the
fine pass, we ignore any cell whose coarse inside-
outside score is below some constant times the max-
imum inside-outside score in the coarse chart.

Another difficulty is in computing the score of a
parse forest. Under our model, the score of a cell
in the chart is a log-linear combination of features,
one of which is the target-language parse forest as-
sociated with the cell. There are good ways to score
edges in this forest, but it is not easy to rate the forest
itself. For this paper, we took a parse forest’s score
to be the sum of the best edge over each span of the
forest, divided by the number of spans. An obvious
step for future work would be to apply a coarse-to-
fine procedure to the target-language forests.

4 Experiments

We used in-house implementations of the parsers
and the BTG decoder, all written in C++.



Our phrase translation table came from two
sources. The first is 44 million word pairs trained
on 160 million words of newswire text. We sup-
plemented this source with a phrase-to-phrase ta-
ble learned from about 833K parallel sentences of
newswire text (the majority of it from Munteanu
and Marcu (2005)). We trained the phrases by run-
ning GIZA++ in both directions, taking the union
of the resulting alignments, and then extracting all
phrase pairs consistent with the unioned alignment
and fewer than eight words on either side, along
with the counts. Probabilities were set to relative
frequency. We then combined the two tables by lin-
early interpolating them, experimenting with differ-
ent weights until we found one that produced the
best results on the development set.

The ngram language model was trained on the En-
glish side of this parallel corpus using SRILM (Stol-
cke, 2002). The parsers were trained the 49,208
trees from the Penn Treebank plus parses of most of
the English side of our parallel data, which was auto-
matically parsed with the parser of Charniak (2000).
With both parsers, we treated commas, colons, and
periods as if they were just regular words in the vo-
cabulary. Quotation marks were treated as an un-
known word, and we used the same set of fifty bins
(computed based on word surface features) for un-
known words used in Petrov et al. (2006).

Our development data consisted of all Chinese
sentences with twenty or fewer words from the NIST
2002 evaluation (371 sentences). The parameters of
our log-linear model (which includes weights for the
ngram and parser models, along with a length bonus)
were set with a hill-climbing procedure on the de-
velopment data. These parameters were then used
to produce results from our test data, which was the
portion of the NIST 2003 evaluation dataset with no
more than twenty words (347 sentences). Our evalu-
ation metric was case-insensitive BLEU-4 (Papineni
et al., 2002). Table 1 contains the results of runs on
the development and test sets.

5 Discussion

All of our syntax-based language models underper-
formed our ngram baselines, suggesting that un-
adapted parsers with a weak translation model un-
der our search approach are not well-suited to the

RUN DEV/10 DEV/4 TEST/4

No LM 17.35 13.12 15.41
Bigram 25.09 19.18 18.62
Trigram 26.18 20.08 21.55
Collins + bigram 25.00 18.92 18.13
Dep + bigram 24.49 18.73 18.52

Table 1: Results (BLEU-4 scores). The number follow-
ing the slash indicates the number of human references
used in computing the BLEU score. No post-processing
was applied to the MT output. The weight for the parser
score was only allowed to go as low at 0.1, which is why
the parser + bigram models are able to score slightly be-
low the bigram model alone.

machine translation task. However, there is much to
be learned from analysis of the strengths and weak-
nesses of the parsers that will be useful for develop-
ing language models for machine translation.

5.1 Search error vs. model error

A question that immediately comes to mind is
whether the low BLEU scores are due to parsers be-
ing poor language models, or to search errors result-
ing from the extensive pruning. This question is dif-
ficult to answer, because without pruning the decod-
ing cannot be completed in a feasible amount of time
and space. We can cut back on pruning for a (time-
consuming) single run across the development cor-
pus, but the hill-climbing procedure to find the best
set of model parameters requires many runs.

We explore this issue with two smaller experi-
ments designed to test the parsers in more limited
settings.

(1) Shuffling. The first experiment was designed
to test how well each language model performs on
the reordering task alone, without having to worry
about word and phrase selection. We took the 1,464
sentences with no more than twenty-five words from
section twenty-three of the WSJ portion of the Penn
Treebank and produced three random ITG permu-
tations of each5. We then parsed these sentences
with our BTG decoder using an identity word trans-
lation table that translated each word as itself, scor-
ing cells in the chart with the language model only.

5By which we mean a permutation that is attainable under
the ITG constraints. To select the permutation, we recursively
choose a split point and decide whether to invert the two halves.



Note that for this task, we removed the WSJ por-
tion of the Treebank from the parser training data,
so that parsers were retrained on only our automat-
ically parsed data. We also applied the parser lan-
guage models directly, skipping the coarse step used
in the decoding results above.

We scored each sentence by summing the dis-
tances from each word in the LM-restored sentence
to its position in the original unpermuted sentence.
The results can be found in Table 2. They show that
the Collins parser does the best job of restoring the
original sentence order.

distance baseline trigram collins depend
0 67 249 325 142
≤ 25 909 1038 1223 962
≤ 50 1690 1735 1945 1706
≤ 75 2282 2282 2507 2353
≤ 100 2800 2807 3037 2890
≤ 125 3138 3231 3424 3296
≤ 150 3460 3600 3747 3666
≤ 175 3699 3857 3977 3902
≤ 200 3910 4017 4158 4099
≤ 225 4085 4215 4264 4222
≤ 250 4207 4326 4330 4311
≤ 275 4290 4376 4362 4359
≤ 300 4364 4392 4375 4385
≤ 325 4392 4392 4378 4389
≤ 350 4392 4392 4392 4392

Table 2: Shuffling experiment: number of sentences
(from 4,392 total) having various edit distances, for each
language model.

(2)Selection. In a second experiment, we test how
well each language model does at selecting among
the translation candidates on a monotonic transla-
tion task. Limiting the number of phrasal translation
candidates for each input phrase to one, our system
produces a BLEU score of 18.78 with the bigram de-
coder and 18.30 for the Collins decoder (once again,
no coarse pass is used).

In summary, the Collins parser did better than the
trigram model on the reordering task, but worse on
the selection task. Note that even in these more lim-
ited experiments, extensive pruning is still required,
so the better performance of the Collins parser on
this first task is significant. One possible explanation
that distinguishes these cases is that in the first case

there is some grammatical permutation of the input,
which is not necessarily the case in the second ex-
periment. The Collins parser was designed to distin-
guish among structures over input whose grammati-
cality is assumed, whereas in MT most (if not all) of
the possible translations will not be grammatical.

5.2 Sentence-level performance

Although the overall BLEU scores of the parser-
based systems were lower, we wondered what was
happening at the sentence level. Table 3 shows a
breakdown in per-sentence performance of each of
the models on the development set.

LM best xbest
baseline 70 53
bigram 127 39
trigram 137 82
Collins + bigram 122 45
depend + bigram 117 45

Table 3: Number of times each system shared the best
sentence-level BLEU score (best) and had the exclusively
best score (xbest).

To compute this number, we used a smoothed BLEU
score similar to that of Liang et al. (2006), which
will only be zero if no ngrams (for all of1 ≤ n ≤ 4)
were matched.

In light of the other results, it is unsurprising that
the trigram model outperforms all of the other mod-
els. It is interesting, however, to compute the best
BLEU score attainable by using an oracle to select
the best sentence (see Table 4). The parser-based

systems BLEU
All five 30.29
Trigram + bigram 28.42
Trigram + Collins + depend 29.23

Table 4: Oracle selection of output across different sets
of system output.

systems are capable of improving the BLEU score
over the ngram language models, but the model is
unable to make use of it. One possible explanation
for this that the decoding model is very coarse, in-
corporating the parser scores with a single weight.
Adding finer-level weights in a generative frame-
work presents difficulties for the training procedure.



Discriminative approaches may be a good way to ad-
dress this problem.

5.3 Fluency

One observation from a manual inspection of the re-
sults is that the fluency of the output from the parser-
enabled decoders is poor. This, despite the fact that
a good high-level structure is often present. Con-
sider a Chinese sentence, one reference for which
is I think it’s just an internal affair of the US. The
trigram decoder produces the passableI think this
issue is totally the United States. The Collins and
dependency outputs can be found in Figure 4. In
both cases, part of the problem is the phrasethe this
(highlighted above). Both parsers are led astray be-
cause of noise in the translation table. The Chinese
character translated asthe in both cases has the fol-
lowing top five translation candidates:

-7.55655 influence in the
-9.46839 influence in
-9.77855 impact on
-10.6608 influence
-11.1026 the

This high-probability noise in the translation table
overwhelms each of the parsers, but for different rea-
sons. Although neither parsing model sawthe in
the training data as a direct argument of the head
that selects them in the above parses, the backoff
model of each allows them to choose it in this sit-
uation with a reasonable probability. For the Collins
parser, the overall structure is convincing enough
that it can overlook this low-probability NP; for the
dependency parser, the combination is an accident of
the independent manner of argument generation. In
contrast, the trigram model rules out this sequence
quite easily.

This situation highlights the fact that ngrams are
important for ensuring fluency at a local level, and
is likely that they will be useful as a complement of
grammatical language models accounting for long-
distance dependencies.

5.4 Consistency of grammatical role

Homographs present another problem to the parsers.
Distributions over argument structure vary widely
depending on the grammatical function of a word,
but many words share a form that takes on mul-
tiple grammatical roles. One example is the

SN P V PP R P V B P S B A RSN PD T D T V PV B Z N PD T N N
I t h i n k

t h e t h i s i s t h e i s s u eI t h i n k t h a t i n fl u e n c e i n t h e t h i s i s s u e i s . . .
Figure 4: Collins and dependency decoder outputs from
a development set sentence.

word lack, which can be either a noun or a
verb. Consider another Chinese sentence that
is translated asThey lack experience in interna-
tional competitions. Our dependency decoder pro-
duces the following translation for this sentence:

The lack int’l comp. exp. .

and the Collins decoder produces this one:

S

NP

PRP

They

VP

VBP

lack

NP

exp. in int’l. contests

The raw counts forlack as a noun are much higher
in our training data than forlack as a verb. Thus
the dependency parser, which does not account for
the verb/noun distinction, preferstheto theyas a left
argument by nearly 20 to 1. In the Collins model,
where the distinction is primary,they is the most
probable left argument.

The decoder’s mistaken treatment oflack as a
noun is an unavoidable problem; even with the



Collins parser, there will likely be a hypothesis in
the chart positing the noun form of the word. The
more serious problem here is the dependency de-
coder’s inconsistent treatment of the word: its left
argument castslack as a noun, while its right argu-
ment treats it as a verb. Moreover, the word’s choice
as the dependency model’s root is licensed mostly
by the verb forms oflack found in the Treebank.

This isn’t necessarily an argument for an explic-
itly defined notion of category. It may be that word
category and consistency can be enforced by doing
away with the modeling assumption that sibling ar-
guments are generated independently of one another,
or some other such method.

5.5 Parameterization

As we have mentioned earlier, the parameterizations
of the parsing models (in terms of independence as-
sumptions and backoff models) discussed in this pa-
per were chose to maximize performance against the
labeled recall and precision tasks of parsing. What’s
more, parsers assume their input to be grammatical.
In contrast, the task for SBLMs for MT is to impose
grammaticality on what can be roughly viewed as a
bag of words. Whereas a parser may rule out a lex-
icalized constituent, say because it cannot produce
one of its arguments with high probability, in trans-
lation there is much more freedom to find what the
language model needs, especially if our reordering
model does not impose many restrictions.

The examples above suggest what may be some
of the problems – in particular, the fact that parsers
generate arguments independently of each other and
with very limited notions of valence.

6 Summary & Conclusion

In this paper we have presented an algorithm that
decouples the syntax of target language structure
from the reordering model, and thus can be used
with any phrase-based translation model. Further-
more, we have investigated the use of existing pars-
ing technology as syntax-based language models for
machine translation. In so doing, we have discov-
ered a number of situations where parsers fail, which
we hope will inform grammatical language mod-
els more suited to the needs of language modeling
for MT. Our analysis suggests that key aspects of

syntax-based language models for MT will include
tightening or removing the independence assump-
tions of parsing models, maintaining some notion
of category, and employing a finer-grained set of
weights over rules and categories.

Acknowledgments This work was supported by
NSF grants IIS-0546554 and ITR-0428020.

References

Eugene Charniak, Kevin Knight, and Kenji Yamada.
2003. Syntax-based language models for machine
translation. InProc. MT Summit IX.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. InProceedings of the 1st Annual Meeting of the
North American Chapter of the ACL (NAACL), pages
132–139, Seattle, Washington.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. Computational Linguistics, 33(2).

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. InACL/EACL-97, pages
16–23, Madrid, Spain.

Michael John Collins. 1999.Head-driven Statistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. InProceed-
ings of COLING/ACL-06, pages 961–968, July.

John E. Hopcroft and Jeffrey D. Ullman. 1979.Intro-
duction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, MA.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. InProceedings of ACL-03,
pages 423–430.

Dan Klein and Christopher D. Manning. 2004. Corpus-
based induction of syntactic structure: models of de-
pendency and constituency. InProceedings of ACL-
04, page 478, Morristown, NJ, USA. Association for
Computational Linguistics.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. InProceed-
ings of NAACL-03, Edmonton, Alberta.

Percy Liang, Alexandre Bouchard-Côté, Dan Klein, and
Ben Taskar. 2006. An end-to-end discriminative ap-
proach to machine translation. InProceedings of the
21st International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Association
for Computational Linguistics, pages 761–768, Syd-
ney, Australia, July.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proceedings of ACL-05, pages 75–82.



Dragos Stefan Munteanu and Daniel Marcu. 2005. Im-
proving machine translation performance by exploit-
ing non-parallel corpora.Computational Linguistics,
31(4):477–504.

Mark-Jan Nederhof and Giogio Satta. 2004. The lan-
guage intersection problem for non-recursive context-
free grammars. Information and Computation,
192:172–184.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic eval-
uation of machine translation. InProceedings of ACL-
02.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InHuman Language Tech-
nologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguis-
tics; Proceedings of the Main Conference, pages 404–
411, April.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and inter-
pretable tree annotation. InProceedings of the 21st In-
ternational Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Com-
putational Linguistics, pages 433–440, Sydney, Aus-
tralia, July. Association for Computational Linguistics.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008.
A new string-to-dependency machine translation al-
gorithm with a target dependency language model.
In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics (ACL-08),
Columbus, OH. ACL.

Andreas Stolcke. 2002. Srilm - an extensible language
modeling toolkit. InInternational Conference on Spo-
ken Language Processing, volume 2, pages 901–904.

Benjamin Wellington, Sonjia Waxmonsky, and I. Dan
Melamed. 2006. Empirical lower bounds on the com-
plexity of translational equivalence. InProceedings of
COLING/ACL-06.

Dekai Wu and Hongsing Wong. 1998. Machine trans-
lation with a stochastic grammatical channel. In
COLING/ACL-98.

Dekai Wu. 1996. A polynomial-time algorithm for sta-
tistical machine translation. In34th Annual Meeting
of the Association for Computational Linguistics.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.


