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Abstract

We apply the idea ofweight pushing
(Mohri, 1997) to CKY parsing with fixed
context-free grammars. Applied after
rule binarization, weight pushing takes the
weight from the original grammar rule and
pushes it down across its binarized pieces,
allowing the parser to make better prun-
ing decisions earlier in the parsing pro-
cess. This process can be viewed as gen-
eralizing weight pushing from transduc-
ers to hypergraphs. We examine its ef-
fect on parsing efficiency with various bi-
narization schemes applied to tree sub-
stitution grammars from previous work.
We find that weight pushing produces dra-
matic improvements in efficiency, espe-
cially with small amounts of time and with
large grammars.

Introduction

showing that binarization has a significant effect
on both the number of rules and new nontermi-
nals introduced, and subsequently on parsing time.
This variation occurs because different binariza-
tion schemes produce different amounts of shared
rules, which are rules produced during the bina-
rization process from more than one rule in the
original grammar. Increasing sharing reduces the
amount of state that the parser must explore. Bina-
rization has also been investigated in the context of
parsing-based approaches to machine translation,
where it has been shown that paying careful atten-
tion to the binarization scheme can produce much
faster decoders (Zhang et al., 2006; Huang, 2007;
DeNero et al., 2009).

The choice of binarization scheme will not af-
fect parsing results if the parser is permitted to ex-
plore the whole search space. In practice, how-
ever, this space is too large, so parsers use prun-
ing to discard unlikely hypotheses. This presents
a problem for bottom-up parsing algorithms be-
cause of the way the probability of a rule is dis-

Fixed grammar-parsing refers to parsing that emtributed among its binarized pieces: The standard
ploys grammars comprising a finite set of rulesapproach is to place all of that probability on the
that is fixed before inference time. This is in top-level binarized rule, and to set the probabilities
contrast to markovized grammars (Collins, 19990f lower binarized pieces to 1.0. Because these
Charniak, 2000), variants of tree-adjoining gram-fules are reconstructed from the bottom up, prun-
mars (Chiang, 2000), or grammars with wildcarding procedures do not have a good estimate of the
rules (Bod, 2001), all of which allow the con- complete cost of a rule until the entire original rule
struction and use of rules not seen in the trainindﬁas been reconstructed. Itis preferable to have this
data. Fixed grammars must be binarized (eitheinformation earlier on, especially for larger rules.
explicitly or implicitly) in order to maintain the In this paper we adapt the techniquevadight
O(n?|G|) (n the sentence lengthG’| the grammar  pushing for finite state transducers (Mohri, 1997)
size) complexity of algorithms such as the CKY to arbitrary binarizations of context-free grammar
algorithm. rules. Weight pushing takes the probability (or,
Recently, Song et al. (2008) explored differentmore generally, the weight) of a rule in the origi-
methods of binarization of a PCFG read directlynal grammar and pushes it down across the rule’s
from the Penn Treebank (the Treebank PCFG)bhinarized pieces. This helps the parser make bet-



ter pruning decisions, and to make them earlier inRule Rule
the bottom-up parsing process. We investigate this
algorithm with different binarization schemes and i =
grammars, and find that it improves the time vs. a JJ NN NN PP the JJ NN NN
accuracy tradeoff for parsers roughly proportion-
ally to the size of the grammar being binarized. ﬂ @

This paper extends the Worl_< of Song et al. NP ] np
(2008) in three ways. First, weight pushing fur- T
ther reduces the amount of time required for pars- (a:((JT:NN):NN)) pp | the ((J:NN):NN)
ing. Second, we apply these techniques to Tree ((T:NN):NN) (J/JI@ NN
Substitution Grammars (TSGs) learned from the T e 7 NN
Treebank, which are both larger and more accu- G/JN\N) ol
rate than the context-free grammar read directly J NN

from the Treebank. Third, we examine the inter-
action between binarization schemes and the inFigure 1: A two-rule grammar.
exact search heuristic of beam-based &rlokest
pruning.

The greedy
binarization algorithm produces the binarization
shown, with the shared structure highlighted. Bi-
narized rules A, B, and C are initially assigned
a probability of 1.0, while rules D and E are as-
signed the original probabilities of rules 2 and 1,
respectively.

2 Weight pushing
2.1 Binarization

Not all binarization schemes are equivalent in
terms of efficiency of representation. Consider the . .
grammar in the lefthand column of Figure 1 (rules2-2 Weight pushing
1 and 2). If this grammar is right-binarized or Spreading the weight of an original rule across
left-binarized, it will produce seven rules, whereasits binarized pieces is complicated by sharing,
the optimal binarization (depicted) produces onlybecause of the constraint that the probability of
5 rules due to the fact that two of them are sharedshared binarized pieces must be set so that the
Since the complexity of parsing with CKY is a product of their probabilities is the same as the
function of the grammar size as well as the inputoriginal rule, for each rule the shared piece partici-
sentence length, and since in practice parsing rexates in. Mohri (1997) introducegeight pushing
quires significant pruning, having a smaller gram-as a step in the minimization of weighted finite-
mar with maximal shared substructure among thatate transducers (FSTs), which addressed a sim-
rules is desirable. ilar problem for tasks employing finite-state ma-
We investigate two kinds of binarization in this chinery. At a high level, weight pushing moves
paper. The firstis right binarization, in which non- the weight of a path towards the initial state, sub-
terminal pairs are collapsed beginning from theect to the constraint that the weight of each path
two rightmost children and moving leftward. The in the FST is unchanged. To do weight pushing,
second is a greedy binarization, similar to that ofone first computes for each stajein the trans-
Schmid (2004), in which the most frequently oc-ducer the shortest distandé;) to any final state.
curring (grammar-wide) nonterminal pair is col- Let o(q, a) be the state transition function, deter-
lapsed in turn, according to the algorithm given inministically transitioning on inpui from state; to
Figure 2. stateo (¢, a). Pushing adjusts the weight of each
Binarization must ensure that the product of theedgew(e) according to the following formula:
probabilities of the binarized pieces is the same as B
that of the original rule. The easiest way to do w'(e) = d(q)~" x w(e) x d(o(g,a)) (1)
this is to assign each newly-created binarized rul§ohri (1997, §3.7) and Mohri and Riley (2001)
a probability of 1.0, and give the top-level rule the discuss how these operations can be applied us-
complete probability of the original rule. In the jng various semirings; in this paper we use the
following subsection, we describe a better way. (;max, x ) semiring. The important observation for

The mean rule rank in a Treebank PCFG is 2.14, whileQUl PUIPOSES IS that pushl_ng can t_>e th(_)l“'ght ofasa
the mean rank in our sampled TSG is 8.51. See Table 1. sequence of local operations on individual nodes



1: function GREEDYBINARIZE(P)
2 while RANK(P) > 2do N 0.6/1.0
3 % 1= UPDATECOUNTS(P) 0.4/0.67 T
4 for each ruleX — zya - -2, do |(a:((JJ:NN):NN)) || PP |
5: b= argmax;c o...,y K[Ti—1, Ti @‘“- A
6 ] = <xb71 :xb> p .2 1.0/1.0
7 add! — zp_1xp tO P L
8 replacer;_qxp with L in rule ((JJ:NN):NN)
9: function UPDATECOUNTS(P)
10: k:={} > a dictionary
11: for each ruleX — x129--- 2, € P do |(JI:NN)| NN |
12: forie (2---r)do
13: /i[wi_l, xi]++
return

Figure 2: A greedy binarization algorithm. The

rank of a grammar is the rank of its largest rule.rigyre 3: The binarized rules of Figure 1 arranged
Our implementation updates the countsimore i 5 shared hypergraph forest. Each hyperedge is
efficiently, but we present it this way for clarity.  |apeled with its weight beforafter pushing.

g, shifting a constant amount of we|gH(q)—1 nonfinal hyperedges have a probability of 1, and fi-
from ¢'s outgoing edges to its incoming edges. 5| hyperedges have a probability equal to the that
~ Klein and Manning (2003) describe an encod-uf the original unbinarized rule. Each path through
ing of context-free grammar rule binarization thatine forest exactly identifies a binarization of a rule

permits weight pushing to be applied. Their ap+y the original grammar, and hyperpaths overlap
proach, however, works only with left or right bi- |\ here binarized rules are shared.

narizations whose rules can be encoded as an FST'Weight pushing in this hypergraph is similar to

We propose a form of weight pushing that works,,eight pushing in a transducer. We consider each
for arbitrary binarizations. Weight pushing across,nfinal nodev in the graph and execute a local

a grammar can be viewed as generalizing pushseration that moves weight in some way from the

ing from weighted transducers to a certain kind ofgt o edgede : v € T(e)} (v's outgoing hyper-

‘edges) to the edge, for which v = h(e) (v's
incoming hyperedge).
Definition. A hypergraph H is a tuple A critical difference from pushing in trans-
(V,E,F,R), whereV is a set of nodesE is @ ducers is that a node in a hyperpath may be
set of hyperedged; C V is a set of final nodes, used more than once. Consider adding the rule
and R is a set of permissible weights on the hy-NP—JJ NN JJ NN to the binarized two-rule gram-
peredges. Each hyperedge € E is a triple  mar we have been considering. Greedy binariza-
(T(e), h(e),w(e)), whereh(e) € V is its head tion could? binarize it in the following manner
node,T’(e) is a sequence of tail nodes, ande) is
its weight. NP — (JINN (JINN

We can arrange the binarized rules of Figure 1 (JINN — JINN
into a shared hypergraph forest (Figure 3), with

nodes as nonterminals and binarized rules as hygyhich would yield the hypergraph in Figure 4. In
peredges. We distinguish between final and nonprder to maintain hyperpath weights, a pushing
final n.OdeS and hyperedges. Nonfinal nodes arﬁrocedure at thé‘]\]N[\b node must pay attention
those inV’ — £ Nonfinal hyperdge&r are those  to the number of times it appears in the set of talil
in {e : h(e) € V — F}, thatis, all hyperedges nodes of each outgoing hyperedge.

whose head is a nonfinal node. Because allnodes

introduced by our binarization procedure expand  “Depending on the order in which thegmax variablei
deterministically. each nonfinal node is the heacgf L!ne 5 frqm the glgorlthm in Figure 2 is considered. Thls
e Y articular binarization would not have been produced if the

of no more than one such hyperedge. Initially, allvalues2.. . r were tested sequentially.

weighted hypergraph. To begin, we use the fol
lowing definition of a hypergraph:



1: function DIFFUSEWEIGHTS(Pg;y, 1)
. ‘=:;::-_9;6_“;f’_\ 2 R := bottom-up sort oPg;x
T 3 for each ruler € R do
s B 4: r.pr ;= max{ «~)/ppr:p € (r)}
! ! [a oo 5 for each rulep € I1(r) do
b 6 p.pr = p.pr/r.preP)

Figure 6: Maximal weight pushing algorithm ap-
plied to a binarized grammaPg; . I1 is a dictio-
nary mapping from an internal binary rule to a list
of top-level binary rules that it appeared under.

and maximal pushing discovered situations where
Figure 4: A hypergraph containing a hyperpathmaximal pushing resulted in search error (see
representing a rule using the same binarized piecg.2). To address this, we also discughroot
twice. Hyperedge weights are again shown bepushing, which attempts to distribute the weight
forefafter pushing. more evenly across its pieces, by taking advantage

of the fact that Equation 2 is a lower bound on the

With these similarities and differences in mind, amount of pr.obability avail'able for pgshihg. _
we can define the local weight pushing procedure. The algorithm for maximal pushing is listed

For each nonfinal node in the hypergraph, we in Figure 6, and works in the following manner.
defineey, as the edge for which(e) = v (as be- When binarizing we maintain, for each binarized

fore), P = {e : v € T(e)} (the set of outgo- piece, a list of all the original rules that share
ing hyperedges), ane(v, T'(¢)) as the number of it. We then distribute that original rule’s weight

timesv appears in the sequence of tail nod&s). by considering each of these binarized pieces in
The minimum amount of probability available for Pottom-up topological order and setting the prob-

pushing is then ability of the piece to the maximum (remaining)
probability of these parents. This amount is then
max{ ‘" “N/w(e) : e € P} (2) divided out of each of the parents, and the process

continues. See Figure 5 for a depiction of this pro-

cess. Note that, although we defined pushing as a

local operation between adjacent hyperedges, it is
fe to move probability mass from the top-level

) : directly to the bottom (as we do here). Intuitively,

of each outgoing hyperedgeasleast aslargeas \ye can imagine this as a series of local pushing

that of the maximum weight. operations on all intervening nodes; the end result
While finite state transducers each have 3s the same.

unique equivalent transducer on which no further For nthroot pushing. we need to maintain a dic-
pushing is possible, defined by Equation 1, this i%io P 9

. naryé§ which records, for each binary piece, the
not the case when operating on hypergraphs. In ; o .
: ) : : . . rank (number of items on the rule’s righthand side)
this generalized setting, the choice of which tail

nodes to push weight across can result in differ—Of the original rule it came from. This is accom-
P g lished by replacing line 4 in Figure 6 with

ent final solutions. We must define a strategy forp a o
choosing among sequences of pushing operations, "P* -~ max{ 0®=-<y/ppr: p € I(r)}
and for this we now turn to a discussion of the Applying weight pushing to a binarized PCFG

This amount can then be multiplied intde; ) and
divided out of each edge € P. Thismax is a
lower bound because we have to ensure that t
amount of probability we divide out of the weight

specifics of our algorithm. results in a grammar that is not a PCFG, be-
_ cause rule probabilities for each lefthand side
2.3 Algorithm no longer sum to one. However, the tree dis-

We present two variantd4aximal pushing, analo- tribution, as well as the conditional distribution
gous to weight pushing in weighted FSTs, pushe®(tregstring) (which are what matter for parsing)
the original rule’s weight down as far as pos-are unchanged. To show this, we argue from
sible. Analysis of interactions between pruningthe algorithm in Figure 6, demonstrating that, for



step A B C D E
0 1.0 1.0 1.0 x Y
1 | max(z,y) : : max(z.9) maxlzx,y)
2 - max(z1,p, 21.E) max(zzll,’g,zw) H’laX(Zle,’DDrZLE)
3 , © max(220,928)  mmtamy) el r)
4

Figure 5: Stepping through the maximal weight pushing algorithm for theibethgrammar in Figure 1.
Rule labels A through E were chosen so that the binarized pieces aré sotopological order. A-)
indicates a rule whose value has not changed from the previous stefheavaluez, . denotes the value
in row r columne.

each rule in the original grammar, its probability the maximum of the(r, p)th root of each parent’s

is equal to the product of the probabilities of its probability, wherec(r, p) is the number of times
pieces in the binarized grammar. This invariantbinarized rule tokem appears in the binarization
holds at the start of the algorithm (because thef p.

probability of each original rule was placed en- Line 4 breaks the invariant, but line 6 restores it
tirely at the top-level rule, and all other pieces re-for each parent rule the current piece takes partin.
ceived a probability of 1.0) and is also true at theFrom this it can be seen that weight pushing does
end of each iteration of the outer loop. Considemot change the product of the probabilities of the
this loop. Each iteration considers a single binarbinarized pieces for each rule in the grammar, and
piece (line 3), determines the amount of probabil-hence the tree distribution is also unchanged.

ity to claim from the parents that share it (line 4), We note that, although Figures 3 and 4 show
and then removes this amount of weight from eactonly one final node, any number of final nodes can
of its parents (lines 5 and 6). There are two impor-appear if binarized pieces are shared across differ-
tant considerations. ent top-level nonterminals (which our implemen-

1. Abinarized rule piece may be used more thar'%atIon permits and which does indeed occur).

once m_the reconstruction of an orlglnalirul'e; 3 Experimental setup

this is important because we are assigning

probabilities to binarized rulgypes, but rule  We present results from four different grammars:
reconstruction makes use of binarized rale

kens. 1. The standard Treebank probabilistic context-

free grammar (PCFG).
2. Multiplying together two probabilities results
in a lower number: when we shift weight 2. A “spinal” tree substitution grammar (TSG),

from the parent rule tor{ instances of) a bi- produced by extracting lexicalized subtrees
narized piece beneath it, we are creating a  from each length sentence in the training
new set of probabilitiep. andp, such that data. Each subtree is defined as the sequence
P - pp = p, Wherep, is the weight placed on of CFG rules from leaf upward all sharing the
the binarized rule type, ang, is the weight same lexical head, according to the Mager-
we leave at the parent. This means that we  man head-selection rules (Collins, 1999). We
must choose, from the rangép, 1.0].3 detach the top-level unary rule, and add in

) ) ] ] counts from the Treebank CFG rules.
In light of these considerations, the weight re-

moved from each parent rule in line 6 must be 3. A “minimal subset” TSG, extracted and then
greater than or equal to each parent sharing the refined according to the process defined in
binarized rule piece. To ensure this, line 4 takes  Bod (2001). For each height2 < h < 14,
3The upper bound of 1.0 is set to avoid assigning a nega- 400,000 S_Ubtrees QI’(? randomly sampled from
tive weight to a rule. the trees in the training data, and the counts



rank NP
grammar| #rules| median mean max PN
PCFG 46K 1 214 51 NP pp
spinal 190K 3 336 51 AN
sampled || 804K 8 851 70 DT JJ NN NN
minimal || 2,566K 10 10.22 62 |

a
Table 1: Grammar statistics. A rule’s rank is the

number of symbols on its right-hand side. Figure 7: Ruld1]in Figure 1 was produced by
flattening this rule from the sampled grammar.

grammar|| unbinarized right greedy

PCFG 46K 56K 51K _ , , )
spinal 190K 309K 235K nal annotations. Punctuation was retained. Statis-
sampled 804K 3.296K 1,894K tics for these grammars can be found in Table 1.
minimal 2566K 15282K 7,981K We present results on sentences with no more than

forty words from section 23.
Table 2: Number of rules in each of the complete Our parser is a Perl implementation of the CKY
grammars before and after binarization. algorithm?# For the larger grammars, memory lim-
itations require us to remove from consideration

are summed. From these counts we remov@” grammar rules that could not possibly take part
(a) all unlexicalized subtrees of height greaterJn aparse of the C}Jrrent §enten'ce,_wh|'ch we do by
than six and (b) all lexicalized subtrees Con_matchlng the rule’s frontier lexicalization pattern
taining more than twelve terminals on theiragainst the words in the sentence. All unlexical-
frontier. and we add all subtrees of heightoneized rules are kept. This preprocessing time is not
(e th’e Treebank PCFG) included in the parsing times reported in the next
o ' section.
4. A sampled TSG produced by inducing For pruning, we group edges into equivalence
derivations on the training data using aclasses according to the following features:

Dirichlet Process prior (described below).
e span(s, t) of the input
The sampled TSG was produced by inducing a
TSG derivation on each of the trees in the train- ® level of binarization (0,1,2+)
ing data, from which subtree counts were read di-

rectly. These derivations were induced using al he level of binarization refers to the height of a

collapsed Gibbs sampler, which sampled from thdonterminal in the subtree created by binarizing a

posterior of a Dirichlet process (DP) defined overCFC rule (with the exception that the root of this

the subtree rewrites of each nonterminal. The DP'€€ has a binarization level of 0). The naming
describes a generative process that prefers smafheéme used to create new nonterminals in line 6
subtrees but occasionally produces larger one&f Figure 2 means we can determine this level by
when used for inference, it essentially discover£0unting the number of left-angle brackets in the
TSG derivations that contain larger subtrees only'onterminal’s name. In Figure 1, binarized rules
if they are frequent in the training data, which dis-° @nd E have level 0, C has level 3, B has level 2,
courages model overfitting. See Post and Gildegnd A has level 1. _ _
(2009) for more detail. We ran the sampler for 100 Within each bin, only thej highest-weight
iterations with a stop probability of 0.7 and the DPtéms are kept, wherg € (1,5, 10, 25, 50) isa pa-_
parametenr = 100, accumulating subtree counts rameter that we vary during our experiments. Ties
from the derivation state at the end of all the itera-2'€ broken arbitrarily. Additionally, we maintain a
tions, which corresponds to 00, 0.7, < 100) beam _vvithin e_ac_h bin, and an edge is pr_uned if its
grammar from that paper. score is not W!thln a fgctor o‘lfQ*5 of the highest-

All four grammar were learned from all sen- S€Oring edge in the bin. Pruning takes place when

tences in sections 2 to 21 of the Wall Street Journdine €dge is added and then again at the end of each

portion of the Penn Treebank. All trees were pre-— 4 s available fromhttp://www.cs.rochester.

processed to remove empty nodes and nontermédu/ ~ post/ .



span in the CKY algorithm (but before applying -320
unary rules). 322 L

In order to binarize TSG subtrees, we follow _ -324 |-
Bod (2001) in first flattening each subtree to a & -326 |-
depth-one PCFG rule that shares the subtree’s roog -8 |- ; ‘ ‘ ;
nonterminal and leaves, as depicted in Figure 7.5 -330 i e
Afterward, this transformation is reversed to pro- 3 332 |- e ‘

(greedy,max) —— |

del score (th

duce the parse tree for scoring. If multiple TSG § -334 |- % p— (greedy,nthroot) : e
subtrees have identical mappings, we take only the® -ase |- g oy ST
most probable one. Table 2 shows how grammar  -338 |- gl (ri?r?éhqtggonog e
size is affected by binarization scheme. -340 i é 1'0 ’ 5'0

We note two differences in our work that ex-
plain the large difference between the scores re-  -290 . ; : .
ported for the “minimal subset” grammar in Bod 300 bt o e e
(2001) and here. First, we did not implement the
smoothed “mismatch parsing”, which introduces
new subtrees into the grammar at parsing time byg
allowing lexical leaves of subtrees to act as wild-
cards. This technigue reportedly makes a Iargew -340 =
difference in parsing scores (Bod, 2009). Second: -350 [

-310 |-

-320 |-

(thousands)
L)

B30

core

(greedy, max) —l— |
(greedy,nthroot) ——@---
(greedy,none) ----A----

we approximate the most probable parse with the ™ ge0 | L it ,@,) i
single most probable derivation instead of the top LA (right,none) -

1,000 derivations, which Bod also reports as hav- 1 5 10 50

ing a large impact (Bod, 20084.2). mean time per sentence (s)

4 Results Figure 8: Time vs. model score for the PCFG (top)

and the sampled grammar (bottom).
Figure 8 displays search time vs. model score for

the PCFG and the sampled grammar. Weight

pushing has a significant impact on search effing at a bin size of = 10, and then saw drops
ciency, particularly for the larger sampled gram-jn scores when given more time. We examined
mar. The spinal and minimal graphs are similar tog number of instances where the &core for a
the PCFG and sampled graphs, respectively, whicBentence was lower at a higher bin setting, and
suggests that the technique is more effective fofound that they can be explained as modeling (as
the larger grammars. opposed to search) errors. With the PCFG, these
For parsing, we are ultimately interested in ac-errors were standard parser difficulties, such as PP
curacy as measured by Bcore? Figure 9 dis-  attachment, which require more context to resolve.
plays graphs of time vs. accuracy for parses withrSG subtrees, which have more context, are able
each of the grammars, alongside the numericap correct some of these issues, but introduce a dif-
scores used to generate them. We begin by notingrent set of problems. In many situations, larger
that the improved search efficiency from Figure 8pin settings permitted erroneous analyses to re-
carries over to the time vs. accuracy curves foimain in the chart, which later led to the parser’s
the PCFG and sampled grammars, as we expediscovery of a large TSG fragment. Because these
Once again, we note that the difference is less profragments often explain a significant portion of the
nounced for the two smaller grammars than for thesentence more cheaply than multiple smaller rules
two larger ones. multiplied together, the parser prefers them. More
often than not, they are useful, but sometimes they
are overfit to the training data, and result in an in-

The tables in Figure 9 show that parser accuracorrect analysis despite a higher model score.
is not always a monotonic function of time; some

of the runs exhibited peak performance as earl¥o

4.1 Model score vs. accuracy

Interestingly, these dips occur most frequently
r the heuristically extracted TSGs (four of six

°F, = 22 whereP is precision and? recall. runs for the spinal grammar, and two for the min-
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(right,max) ---{-}---
gright,none)

Do
1

5 10
mean time per sentence (s)

50

run 1 5 10 25 50
W (gm)| 66.44 7245 7254 7254 7251
® (gn) | 6544 7221 7247 7245 T2.47
A (9-) | 6391 7191 7248 7251 7251
O (r,m) | 67.30 72.45 72.61 72.47 72.49
O (rn) | 64.09 71.78 72.33 7245 7247
A (r-) | 61.82 71.00 72.18 72.42 72.41
spinal

run 1 5 10 25 50
B (gm)| 6833 7835 79.21 79.25 79.24
® (g,n) | 64.67 78.46 79.04 79.07 79.09
A (9-) | 6144 77.73 7894 79.11 79.20
O (rm) | 69.92 79.07 79.18 79.25 79.05
O (rn) | 67.76 78.46 79.07 79.04 79.04
A (r-) | 65.27 77.34 78.64 78.94 78.90
sampled

run 1 5 10 25 50
B (gm)| 63.75 80.65 81.86 82.40 82.41
® (g,n) | 61.87 79.88 81.35 82.10 82.17
A (g-) | 53.88 78.68 80.48 81.72 81.98
O (rm) | 72.98 81.66 82.37 82.49 82.40
O (r,n) | 6553 79.01 80.81 8191 82.13
A (r-) | 61.82 77.33 79.72 81.13 81.70
minimal

run 1 5 10 25 50
W (gm)| 59.75 77.28 77.77 78.47 7852
® (g,n) | 5754 77.12 77.82 78.35 78.36
A (g-) | 51.00 7552 77.21 7830 78.13
O (rm) | 65.29 76.14 77.33 78.34 78.13
O (rn) | 61.63 75.08 76.80 77.97 78.31
A (r-) |59.10 7342 76.34 77.88 77.91

Figure 9: Plots of parsing time vs. accuracy for each of the grammarh.datacontains four sets of five
points (3 € (1,5,10,25,50)), varying the binarization strategy (right (r) or greedy (g)) and thglte
pushing technique (maximal (m) or none (-)). The tables also include aatarfthroot (n) pushing.
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happened because maximal pushing allowed too
much weight to shift down for binarized pieces of

competing analyses relative to the correct analy-
sis. Using nthroot pushing solved the search prob-
lem in that instance, but in the aggregate it does
not appear to be helpful in improving parser effi-

ciency as much as maximal pushing. This demon-
strates some of the subtle interactions between bi-

3 narization and weight pushing when inexact prun-
55 - (right,nthroot) -- - : P :
1 tightnone) 25— ing heuristics are applied.
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grammar.

imal grammar) and for the PCFG (four), and leas
often for the model-based sampled grammar (ju
once). This may suggest that rules selected by our
sampling procedure are less prone to overfitting o

5 10 50
mean time per sentence (s)

the training data.

4.2 Pushing

S

4.3 Binarization

Song et al. (2008, Table 4) showed that CKY pars-
ing efficiency is not a monotonic function of the
number of constituents produced; that is, enumer-
ating fewer edges in the dynamic programming
chart does not always correspond with shorter run
times. We see here that efficiency does not al-
ways perfectly correlate with grammar size, ei-
ther. For all but the PCFG, right binarization
improves upon greedy binarization, regardless of
the pushing technique, despite the fact that the
right-binarized grammars are always larger than
the greedily-binarized ones.

Weight pushing and greedy binarization both in-
crease parsing efficiency, and the graphs in Fig-
ures 8 and 9 suggest that they are somewhat com-

lementary. We also investigated left binarization,
gut discontinued that exploration because the re-
sults were nearly identical to that of right bina-
rr]lzation. Another popular binarization approach
is head-outward binarization. Based on the anal-
ysis above, we suspect that its performance will
fall somewhere among the binarizations presented
here, and that pushing will improve it as well. We

Figure 10 compares the nthroot and maximahOloe to investigate this in future work.

pushing techniques for both binarizations of the

sampled grammar. We can see from this figure; Summary

that there is little difference between the two tech-

niques for the greedy binarization and a large difWeight pushing increases parser efficiency, espe-
ference for the right binarization. Our original mo- cially for large grammars. Most notably, it im-
tivation in developing nthroot pushing came as goroves parser efficiency for the Gibbs-sampled
result of analysis of certain sentences where maxree substitution grammar of Post and Gildea
imal pushing and greedy binarization resulted in(2009).

the parser producing a lower model score than We believe this approach could alo bene-
with right binarization with no pushing. One suchfit syntax-based machine translation. Zhang et
example was binarized fragme from Fig- al. (2006) introduced a synchronous binariza-
ure 1; when parsing a particular sentence in théion technique that improved decoding efficiency
development set, the correct analysis required thand accuracy by ensuring that rule binarization
rule from Figure 7, but greedy binarization andavoided gaps on both the source and target sides
maximal pushing resulted in this piece getting(for rules where this was possible). Their binariza-
pruned early in the search procedure. This pruningjon was designed to share binarized pieces among



rules, but their approach to distributing weight wasDan Klein and Christopher D. Manning. 2003. A*

the default (nondiffused) case found in this paper Parsing: Fast exact Viterbi parse selection.Pho-

At ; : . ceedings of the 2003 Meeting of the North American
_to be Iea;t efficient: The entlrg wg|ght of the orig chapter of the Association for Computational Lin-
inal rule is placed at the top binarized rule and all  ;igics (NAACL-03), Edmonton, Alberta.

internal rules are assigned a probability of 1.0.

Finally, we note that the weight pushing a|gO_Mehrya_r Mohri ar_1d Michael Riley. 2001. A weight
pushing algorithm for large vocabulary speech

rithm described in this paper began with a PCFG recognition. InEuropean Conference on Speech
and ensured that the tree distribution was not Communication and Technology, pages 1603—1606.
changed. However, weight pushing need not be , . )
limited to a probabilistic interpretation, but could Mehryar Mohri. 1997. Finite-state transducers in lan-

_ o uage and speech processingomputational Lin-
be used to spread weights for grammars with dis- guisg% 23(2)[):269_3%1_ "o

criminatively trained features as well, with neces- o _ .
sary adjustments to deal with positively and negaMatt Post and Daniel Gildea. 2009. Bayesian learning
tivelv weighted rules ofatree substltuyon grammar. I!?n(_)ceedl ngs of the

y g ' 47th Annual Meeting of the Association for Compu-
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