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Abstract

We show that a tree substitution grammar (TSG) induced wabllapsed Gibbs
sampler results in lower perplexity on test data than bottaadard context-free
grammar and other heuristically trained TSGs, suggestiagitis better suited to
language modeling. Training a more complicated bilexi@abkmg model across
TSG derivations shows further (though nuanced) improveénWa conduct anal-
ysis and point to future areas of research using TSGs asdgeguodels.

1 Introduction

Recently a number of groups have had success parsing watsutestitution grammars (TSGs) that
were induced from the Penn Treebank with collapsed Gibbgpkamin a Bayesian framework
(Cohn et al., 2009; Post and Gildea, 2009). Compared to jeasistic approaches, these grammars
are compact and intuitive, have a more natural distributeer rule size, and perform well on
parsing accuracy relative to the Treebank grammar. Thiso§dearning can be viewed as refining
the structure of the Treebank grammar; while TSGs are weadiyvalent to CFGs and have the
same distribution over strings, the rules of the grammartsaguite different. Extracting TSG
subtrees from the Treebank allows the rules themselvestoreamore complicated dependencies
(as opposed to leaving this to the parsing model alone). kample, a lexicalized subtree can
capture the predicate-argument structure of a verb.

In this paper, we show that, in addition to increasing parsiocuracy, these induced TSGs also
have a significantly lower perplexity on test data under added context-free parsing model. With
small modifications, this result also holds for a more congiéd bilexical parsing model trained
over a version of the Treebank that has been “flattened” waighinduced TSG derivations. These
observations are appealing from the perspective of largleayning and representation, where
we are more directly interested in how accurately and cothpagrammar encodes grammatical
strings than in how well it can infer the derivation of a sexteewhose grammaticality is assumed.

2 Experimental setup

Our training data was all sentences from sections 2 to 21eofWhll Street Journal portion of the
Penn Treebank, and for testing we used the 2,245 sententtefovtyy or fewer tokens in section
23. We took as our vocabulary the set of 23,767 case-semsitikens appearing more than once in
the training data. All other tokens were converted to a seiglity unknown word classes based on
surface features (Petrov et al., 2006). Trace nodes andarod#ations (e.g., temporal, subject, and
locative markers) were removed from all of our data.

Underlying our experiments are three grammars:



rulesused
grammar size F1 perplexity | tokens  types
CFG 46K | 72.6 692.0| 86,561 9,012
spinal+CFG 191K| 79.2 544.0| 61,750 14,090
DOP+CFG 2,567K| 77.3 505.1| 45,914 18,301
sampled+CFG 77K 80.1 523.9| 65,311 12,367
sampled 63K| 81.7 429.7 | 56,769 13,375
bigram 342K - 238.4 - -
trigram 430K - 202.4 - -

Table 1: Parsing scores and model perplexity. The size ofmgrar is the number of subtrees in
the grammar, whereas the size of an ngram model is the nurhbatrees in its table, including the
backoff tables.

1. The Treebank grammaliThis is the grammar obtained by using all standard (heigk) o
CFG rules from our training data.

2. A “spinal” tree substitution grammar Similar to Chiang (2000), we heuristically define
subtrees to be the sequence of adjacent rules in a parsbadteshare a head, according to
the Collins head-selection rules. This yieldslistinct subtrees for each lengthsentence,
each having a single lexical item among the nodes of its iieant

3. A sampled tree substitution grammaie induced TSG derivations from the parse trees
in the training data using a collapsed Gibbs sampler with réicBlet Process prior, as
described in Post and Gildea (2069and formed the grammar from the subtrees from the
derivations at the end of the 100th iteration.

Each grammar was built from derivations of the parse tregbentraining corpus. We use the
termsrule andsubtreemore or less interchangeably to denote the rewrites of nomals in CFGs
and TSGs. In addition to parsing with these grammars aloeealao experiment with combining
grammars, e.g., “spinal+CFG” means that we took the setle$fuom two instances of the train-
ing corpus, one annotated with spinal grammar derivationsthe other with standard Treebank
derivations.

The probability of a senteneewhen parsing with a grammétis given afrg (s) = >4 p. Pr(d),
where Dy is the set of derivations whose yieldisandPr(d) is defined by the parsing model. To
compute perplexity, we follow standard practice and edgntlae cross-entropy of each modgl
with respect to the true distributignon the test corpu§ as

1
H(p,G) % 1 3 log, Pra(s)
ses

(where N is the number of tokens in the sentencesSdbr which the parser produced an analy-
sis) and report perplexity &7(»:¢) . Under the assumption that a better model will assign higher
probability to a test corpus of grammatical sentences thaorae model, lower perplexity is better.

The bigram and trigram language model baselines listed thatables were trained and tested on
the same data sets described above using SRILM versiorf WhtPthe default settings.

3 Context-free grammar parsing

We begin by presenting perplexity results for context-fgeemmar parsing. This standard model
defines the probability of a derivation as the product of ttabpbilities of the fixed rules that con-

stitute it, where each probability is conditioned only oa tabel of the nonterminal it is expanding.
Subtree probabilities were assigned according to theitivel frequency.

1See Goldwater et al. (2009) for an excellent introduction to using this igeifor segmentation tasks.
2ht t p: / / www. speech. sri. conl projects/srilm



grammar | failures perplexity
CFG 122 1,325.0
spinal+CFG 124 1,902.9
sampled 133 2,118.1
sampled+CFG 123 1,803.4

DOP+CFG 123 3,174.3
bigram 0 1,274.9

trigram 0 1,277.1

Table 2: Model perplexity on a mildly ungrammatical corpausivhich the children of all NPs were
reversed. The “failures” column indicates the number otesaces for which the model could not
find a parse.

Table 1 lists perplexity results for language modeling withse grammars along with F1 scores on
the parsing task. In addition to the grammars mentioned above, we presenltsesom a Data-
Oriented Parsing (DOP) “all subtrees” grammar producedamglomly sampling 400,000 subtrees
of heights two, three, and so on, up to a height of fourteedeasribed in Bod (2001).

From this table we can see that, apart from the DOP modelgparsuracy and perplexity are
correlated for these grammars under this simple parsingemdtie lower perplexity results for the
tree substitution grammars might appear obvious at firstoglaTSGs use larger rules, so there will
be fewer probabilities to multiply together in the derieati The DOP grammar provides a useful
counterexample; despite using many fewer rules, its petples significantly higher than that of
the sampled grammar. This can explained by the fact thabwadth the DOP grammar employed
significantly fewer rule tokens, it is overfit to the trainidgta, and its immense size means that
the probability mass for each nonterminal rewrite is spreath more thinly across rule types.
Compactness of a grammar is an important property for kgepérplexity low. The collapsed
Gibbs sampling procedure yields a compact grammar thattivelto other CFGs, is both more
accurate for parsing and better for language modeling.

Table 2 contains results of an additional experiment. A nemalb research groups have shown that
PCFGs are not very helpful in improving BLEU scores for maehiranslation (Charniak et al.,
2003; Och et al., 2004; Post and Gildea, 2008). Furthernibes, do not even appear to be very
useful in distinguishing grammatical from ungrammatieaktt Cherry and Quirk (2008) used model
scores produced by a maximum-likelihood estimated pargéravMarkovized, parent-annotated
Treebank grammar to classify a corpus of 6,000 Wall Stragihdd sentences and “pseudo-negative”
ngram-sampled sentences (Okanohara and Tsuijii, 2007Y.r€perted a development set accuracy
of only 65% when using sentence length and model score amthideatures of an SVM-trained
classifier. A good language model should have a large gapeleetwodel scores on good and bad
text, so comparing a model’s scores on both kinds of textressihat it is not simply happy with
any kind of input* To produce ungrammatical text that did not result in too maenge failures with
these grammars, we took the parse trees associated witkritenses in the test data and reversed
the order of the children of all NP nodes. This produces wildigrammatical sentences whose
meaning is still mostly clear, as can be seen in this exanwilth Gome constituents marked for
clarity):

[banks investment Big} refused to step up to [plate thg]to support [traders
floor beleaguered thg} by buying [[of stockpp [blocks bighp]ne , traders say .

We draw attention to a few interesting aspects of this tablee DOP model is again an outlier; its
perplexity score is much higher than that of any other modieken alone, this result is a positive
finding for DOP, but together with the result in Table 1, itreseo corroborate the earlier suggestion
that it is overfit to the training data. Just as it generaliess well in finding parse structures for
unseen (grammatical) sentences, it is also unable to firslazbry explanations for ungrammatical
ones. Second, the overall trend of the perplexity scores ¢mrelate with those of the grammatical

3Computing the best parse with tree substition grammars is NP-hard ($ini&@6), so we approximate it
with the Viterbi derivation.

“It also prevents a model from winning a perplexity competition by ignoriregtést data entirely and
reporting a very small perplexity.



text: the sampled grammar alone is best, followed by thegfibuequal) spinal+CFG and sam-
pled+CFG, which are all much improved over the plain CFG rho@énally, note that the plain
CFG assigns a perplexity score that is in the neighborhodkasfe assigned by the ngram models,
with the CFG’s slight lead perhaps explained by the fact thatpermutation of the test-data was
performed at the constituent (and not the word) level. Togiethe results in Tables 1 and 2 provide
evidence that the sampled TSG is the best grammatical lgeguadel.

4 Bilexicalized parsing

The previous section showed that sampled grammars outpedther grammars in terms of per-
plexity with a standard context-free parsing model thatritexs nonterminals in a single act condi-
tioned solely on the identity of the current node. This is)figant, because it suggests that PCFGs
in general may not be as poor of language models as often lihoargd that we have mechanisms
for producing context-free grammars that do a much betteofanodeling language than the Tree-
bank grammar. The fact remains, however, that the contegtrhodel is quite constrained, ignoring
salient elements of the structural history that shouldlgure conditioned upon. A natural question
that arises is whether the perplexity improvements seehdrptevious section would carry over
to more complicated generative models with fewer (and meaéstic) independence assumptions.
If so, this would provide some evidence that the underlyirgrgnars being learned are finding
something closer to the “real” structures behind the text.

In this section, we explore this question, using the sammgrars from the previous section to train
a bilexicalized, Markovized parser. This model is based oflifts Model 1 (Collins, 1999) and is
similar to Charniak’s bihead model (Charniak, 200IJhe generative model proceeds as follows:
given nonterminal (initially the top-level symbol), we

1. generate the head word and tagtj
2. generate the head chill conditioned onP, h, andt)

3. generate the siblings &f and their head tags, conditioned BnH, h, t, the direction from
the head (left or right), and the distance from the head ¢hifijacent or not).

4. generate each sibling head word conditioned agaiR,d#, &, t, direction, adjacency, plus
the sibling label”' and its head’s tagy.

This process recurses until an entire parse tree has beenagegth We employed the three-level
backoff scheme presented in Table 7.1 of Collins (1999).

This model is called a lexicalized model because (a) theresipa of a node into all of its children
is conditioned on the parent’s head word and (b) heads ofititiags of the head child are also
conditioned on the parent’s head word. This latter conditig is also called bilexicalization. We
will take care not to confuse this with the notion of lexiealiion in tree substitution grammars,
where the term denotes the fact that subtrees are pernottele lexical items among their frontier
nodes.

The Collins model is trained by reading events from the Tae&bIn order to do this with our TSGs,
we had to preprocess the corpus in two ways. First, we fladt&®& subtrees to equivalent height-
one CFG trees. This does not affect the end result, becateseahnodes of TSG subtrees contribute
nothing to language modeling under the inference modelsreveansidering. Second, the Collins
parsing model training procedures expect (tag,word) paithe training data, but flattening the
lexicalized TSG rules removes many of the tags from the itigicorpus. To correct for this, we
reintroduce dummy preterminals above such words that ekdaterministically. We also modified
the head-finding rules to select the same lexical head thaldNwve been selected if the interior
nodes were present. These preprocessing steps are fhalsinaFigure 1. With this in place, the
correct statistics can be collected for the Collins parsirglel.

50Our implementation of Collins Model 1 differs in that we parse punctuatiogegsiar symbols and do not
make special provisions for commas and colons, in order to compuiparable perplexity scores.

®This is true for CFG parsing, as well, but not for parser evaluation. Vatuate for parsing accuracy,
the original structure can be restored by retaining a mapping betweenmigirabsubtrees and the flattened
representation, as described by Bod (2001).
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Figure 1: Preprocessing steps applied to TSG derivatiotieifireeank to ensure compatibility with
the Collins parsing model. (top) A TSG derivation tree intitaéning data for the “spinal” grammar.
Boxed nodes denote boundaries between TSG subtrees (trantbfsontier nodes of each subtree).
(middle) The same derivation, collapsed to an equivaleighteone CFG. (bottom) The final tree
with dummy preterminals inserted.



grammar | failures perplexity
CFG 12 305.2
spinal+CFG 15 318.8
sampled 138 327.7

sampled+CFG 4 305.0
bigram 0 238.4

trigram 0 202.4

Table 3: Perplexity for the bilexicalized parsing model stoacted from different training corpus
derivations. The failures column denotes the number okseets for which no parse could be found.

Table 3 presents perplexity results obtained by trainirng itodel over the flattened corpora. We
begin by noting that perplexity scores for all the grammaeswaell above the ngram baselines.
This is in contrast to previous work on syntax-based langumgdeling which has improved upon a
trigram baseline (Chelba and Jelinek, 1998; Roark, 200&riiiak, 2001). It is difficult to compare
directly to this body of work: the vocabularies used were mamaller (10K), punctuation was
removed and numbers were collapsed to a single token, anddiais were given about the backoff
scheme employed by the baseline trigram model. We notethabbecause of pruning, the string
probabilities assigned by our parser are underestimatdsyea did not experiment with beam width.
Butirrespective of these arguments, for purposes of thptoeation we take the desirability of syntax
as a given and focus on improving those models relative teyhtactic baseline.

The TSG models do not lead to any significant improvementitvebaseline CFG, either. Analysis
of the failures of the spinal grammar gives us a clue as to \Wly/is the case. The reader may
have observed that neither Table 1 nor 3 contain row entoiethé spinal grammar alone. This is
due to the fact that the spinal grammar, each rule of whichahagical item among the nodes of
its frontier, is too rigid for either parsing model, and Hgdralf the sentences resulted in a parse
failure. The standard CFG parsing model has no notion ofibhgaiff, so if the fixed rules cannot
be assembled into a parse tree, the parser fails. The saflempris present in the Collins parsing
model, even with its backed-off smoothing structure. Witkidal items at the leaves of PCFG rules,
the generation of sibling nodes contains bilexical stagstven at the third level of backoff structure.
To see this, note that these third-level statistics geadhe sibling label” and sibling head tag.
conditioned on the parent labEl, head tag, and directionA:

Pr(C,t. | P,t,A)
In the collapsed structure depicted in Figure 1, this an®tmte.q.,
Pr(NP, NN[fever] | S, VBZ[has], <)
It seems that the Collins backoff model is less useful wheéngua grammar in which all subtrees

contain lexical items; a more appropriate model would em@different backoff structure that
would allow an analysis to be produced in light of these sppesameters.

In light of this problem, one might hope that the other TSGhiclv contain both lexicalized and

unlexicalized rules, would outperform the CFG baseline. dé/esee a small improvement with the
sampled+CFG grammar (fewer parse failures), but the léxataon problem described above led us
to a solution which showed real improvement: we forciblyadétlexical items from all subtrees in

the training corpus at the preterminal node, and retrairbilesicalized model on this new corpus.
This can be seen as smoothing the TSGs in a manner that is pprapaiate for the bilexical parsing

model. We denote a corpus that has been modified in this wagrass, and present perplexity

results for these new grammars in Table 4.

In this way we obtain a larger improvement in perplexity. [€@# shows that a combination of
heuristic and sampled TSGs can beat the CFG baseline evegltiizey are using a parsing model
optimized for that baseline. Forcing the delexicalizatarthese grammars frees up the parsing
model’s bilexical parameters, and computing those parammeter the revised structures produced
by the flattened TSG subtrees helps produce a better langnadel. The results for parsing the
mildly ungrammatical “reversed NP” version of the test agrjare less informative under this pars-
ing model. The perplexity scores are all lower than the ngrasdels, and are very roughly similar;
the CFG and spinal models give better (higher) overall s;dmat they are also responsible for many
more parse failures. Without further analysis of the charistics of the sentences that produced
failures and the lower scores, it is difficult to say what tifeedent numbers mean.



reversed NPs
grammar | failures perplexity | failures perplexity
CFG 12 305.2 184 1,769.6
spinab 13 301.0 230 1,758.7
spinab+CFG 6 304.9 209 1,977.1
sampleg, 2 309.7 40 1,414.7
samplegh+CFG 2 299.8 39 1,628.1
sampleg+spinah 2 290.6 41 1,584.5
sampleg+spinah +CFG 2 291.8 40 1,774.0
samplegh+sampled 4 315.3 40 1,553.3
bigram 0 238.4 0 1,274.9
trigram 0 202.4 0 1,277.1

Table 4: Model perplexity for the bilexicalized parsing nebafter detaching lexical items from
TSG subtrees in the training corpus.

5 Conclusion

Computational complexity is a significant barrier to the abgch syntax-based models in practical
applications. The large reduction in perplexity of indutesk substition grammars in the standard
CFG model is encouraging, because parsing in that modebis @uthe size of the input, as op-
posed to being)(n*) for bilexical parsing (Eisner and Satta, 1999). With thepfeity scores of
these TSG grammars under the simple parsing model appropttiose of the more complicated
bilexicalized parsing models, this kind of modeling coutfbasible for applications like machine
translation.

Beyond this, a growing intuition within the community is tllae sorts of structures and models that
have been useful for parsing are not necessarily the sanmses that will be useful for language
modeling. The improvements in perplexity gained from the afsautomatically induced tree substi-
tution grammars under two different parsing models suggessearch direction for future language
modeling efforts, and the analysis presented here of thelcated interaction between grammar
lexicalization and parsing model lexicalization shouldphiaform smoothing methods more suited
to language modeling with TSGs. In the future, we plan furésperiments with this family of
grammars, including the investigation of models and smogthrocedures best-suited to language
modeling, and the optimal set of structures over which tim tfsose models.
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