
Extracting Synchronous Grammar Rules
From Word-Level Alignments in Linear Time

Hao Zhang and Daniel Gildea

Computer Science Department

University of Rochester

Rochester, NY 14627, USA

David Chiang

Information Sciences Institute

University of Southern California

Marina del Rey, CA 90292, USA

Abstract

We generalize Uno and Yagiura’s algo-

rithm for finding all common intervals of

two permutations to the setting of two

sequences with many-to-many alignment

links across the two sides. We show how

to maximally decompose a word-aligned

sentence pair in linear time, which can be

used to generate all possible phrase pairs

or a Synchronous Context-Free Grammar

(SCFG) with the simplest rules possible.

We also use the algorithm to precisely

analyze the maximum SCFG rule length

needed to cover hand-aligned data from

various language pairs.

1 Introduction

Many recent syntax-based statistical machine

translation systems fall into the general formalism

of Synchronous Context-Free Grammars (SCFG),

where the grammar rules are found by first align-

ing parallel text at the word level. From word-

level alignments, such systems extract the gram-

mar rules consistent either with the alignments

and parse trees for one of languages (Galley et

al., 2004), or with the the word-level alignments

alone without reference to external syntactic anal-

ysis (Chiang, 2005), which is the scenario we ad-

dress here.

In this paper, we derive an optimal, linear-time

algorithm for the problem of decomposing an ar-

bitrary word-level alignment into SCFG rules such

that each rule has at least one aligned word and is

minimal in the sense that it cannot be further de-

composed into smaller rules. Extracting minimal

rules is of interest both because rules with fewer

words are more likely to generalize to new data,

and because rules with lower rank (the number of

nonterminals on the right-hand side) can be parsed

more efficiently.

This algorithm extends previous work on fac-

toring permutations to the general case of factor-

ing many-to-many alignments. Given two permu-

tations of n, a common interval is a set of numbers

that are consecutive in both. The breakthrough

algorithm of Uno and Yagiura (2000) computes

all K common intervals of two length n permu-

tations in O(n + K) time. This is achieved by

designing data structures to index possible bound-

aries of common intervals as the computation pro-

ceeds, so that not all possible pairs of beginning

and end points need to be considered. Landau et

al. (2005) and Bui-Xuan et al. (2005) show that all

common intervals can be encoded in O(n) space,

and adapt Uno and Yagiura’s algorithm to produce

this compact representation in O(n) time. Zhang

and Gildea (2007) use similar techniques to factor-

ize Synchronous Context Free Grammars in linear

time.

These previous algorithms assume that the input

is a permutation, but in machine translation it is

common to work with word-level alignments that

are many-to-many; in general any set of pairs of

words, one from each language, is a valid align-

ment for a given bilingual sentence pair. In this

paper, we consider a generalized concept of com-

mon intervals given such an alignment: a common

interval is a pair of phrases such that no word pair

in the alignment links a word inside the phrase

to a word outside the phrase. Extraction of such

phrases is a common feature of state-of-the-art

phrase-based and syntax-based machine transla-

tion systems (Och and Ney, 2004a; Chiang, 2005).

We generalize Uno and Yagiura’s algorithm to this

setting, and demonstrate a linear time algorithm

for a pair of aligned sequences. The output is a tree

representation of possible phrases, which directly

provides a set of minimal synchronous grammar

rules for an SCFG-based machine translation sys-

tem. For phrase-based machine translation, one

can also read all phrase pairs consistent with the

original alignment off of the tree in time linear in

the number of such phrases.

2 Alignments and Phrase Pairs

Let [x, y] denote the sequence of integers between

x and y inclusive, and [x, y) the integers between

x and y − 1 inclusive. An aligned sequence pair

or simply an alignment is a tuple (E, F, A), where

E = e1 · · · en and F = f1 · · · fm are strings, and

A is a set of links (x, y), where 1 ≤ x ≤ n and

1 ≤ y ≤ m, connecting E and F . For most of this

paper, since we are not concerned with the identity

of the symbols in E and F , we will assume for

simplicity that ei = i and fj = j, so that E =
[1, n] and F = [1, m].

In the context of statistical machine translation

(Brown et al., 1993), we may interpret E as an En-

glish sentence, F its translation in French, and A

a representation of how the words correspond to

each other in the two sentences. A pair of sub-

strings [s, t] ⊂ E and [u, v] ⊂ F is a phrase pair

(Och and Ney, 2004b) if and only if the subset of

links emitted from [s, t] in E is equal to the sub-

set of links emitted from [u, v] in F , and both are

nonempty.

Figure 1a shows an example of a many-to-

many alignment, where E = [1, 6], F =
[1, 7], and A = {(1, 6), (2, 5), (2, 7), (3, 4),
(4, 1), (4, 3), (5, 2), (6, 1), (6, 3)}. The eight

phrase pairs in this alignment are:

([1, 1], [6, 6]), ([1, 2], [5, 7]),

([3, 3], [4, 4]), ([1, 3], [4, 7]),

([5, 5], [2, 2]), ([4, 6], [1, 3]),

([3, 6], [1, 4]), ([1, 6], [1, 7]).

In Figure 1b, we show the alignment matrix rep-

resentation of the given alignment. By default, the

columns correspond to the tokens in E, the rows

correspond to the tokens in F , and the black cells

in the matrix are the alignment links in A. Using

the matrix representation, the phrase pairs can be

viewed as submatrices as shown with the black-

lined boundary boxes. Visually, a submatrix rep-

resents a phrase pair when it contains at least one

alignment link and there are no alignment links di-

rectly above, below, or to the right or left of it.

e1 e2 e3 e4 e5 e6

f1 f2 f3 f4 f5 f6 f7
1

1

2

2

3

3

4

4

5

5

6

6

7

(a) (b)

Figure 1: An example of (a) a many-to-many

alignment and (b) the same alignment as a matrix,

with its phrase pairs marked.

2.1 Number of Phrase Pairs

In this section, we refine our definition of phrase

pairs with the concept of tightness and give an

asymptotic upper bound on the total number of

such phrase pairs as the two sequences’ lengths

grow. In the original definition, the permissive

many-to-many constraint allows for unaligned to-

kens in both sequences E and F . If there is an un-

aligned token adjacent to a phrase pair, then there

is also a phrase pair that includes the unaligned

token. We say that a phrase pair ([s, t], [u, v]) is

tight if none of es, et, fu and fv is unaligned. By

focusing on tight phrase pairs, we eliminate the

non-tight ones that share the same set of alignment

links with their tight counterpart.

Given [s, t] in E, let l be the first member of

F that any position in [s, t] links to, and let u be

the last. According to the definition of tight phrase

pair, [l, u] is the only candidate phrase in F to pair

up with [s, t] in E. So, the total number of tight

phrase pairs is upper-bounded by the total number

of intervals in each sequence, which is O(n2).
If we do not enforce the tightness constraint, the

total number of phrase pairs can grow much faster.

For example, if a sentence contains only a single

alignment link between the midpoint of F and the

midpoint of E, then there will be O(n2m2) possi-

ble phrase pairs, but only a single tight phrase pair.

From now on, term phrase pair always refers to a

tight phrase pair.

2.2 Hierarchical Decomposition of Phrase

Pairs

In this section, we show how to encode all the tight

phrase pairs of an alignment in a tree of size O(n).
Lemma 2.1. When two phrase pairs overlap, the

intersection, the differences, and the union of the

two are also phrase pairs.

([1, 6], [1, 7])

([1, 3], [4, 7])

([1, 2], [5, 7])

([1, 1], [6, 6])

([3, 3], [4, 4])

([4, 6], [1, 3])

([5, 5], [2, 2])

Figure 2: The normalized decomposition tree of

the alignment in Figure 1.

The following picture graphically represents the

two possible overlapping structures of two phrase

pairs: ([s, t], [u, v]) and ([s′, t′], [u′, v′]).

s s’ t t’

u

u’

v

v’

s s’ t t’

u’

u

v’

v

Let AB and BC be two overlapping English

phrases, with B being their overlap. There are six

possible phrases, A, B, C, AB, BC, and ABC,

but if we omit BC, the remainder are nested and

can be represented compactly by ((AB)C), from

which BC can easily be recovered. If we system-

atically apply this to the whole sentence, we obtain

a hierarchical representation of all the phrase pairs,

which we call the normalized decomposition tree.

The normalized decomposition tree for the exam-

ple is shown in Figure 2.

Bui-Xuan et al. (2005) show that the family of

common intervals is weakly partitive, i.e. closed

under intersection, difference and union. This al-

lows the family to be represented as a hierarchi-

cal decomposition. The normalized decomposi-

tion focuses on the right strong intervals, those

that do not overlap with any others on the right.

Lemma 2.1 shows that the family of phrase pairs

is also a weakly partitive family and can be hierar-

chically decomposed after normalization. A minor

difference is we prefer left strong intervals since

our algorithms scan F from left to right. Another

difference is that we binarize a linearly-arranged

sequence of non-overlapping phrase pairs instead

of grouping them together.

In the following sections, we show how to pro-

duce the normalized hierarchical analysis of a

given alignment.

3 Shift-Reduce Algorithm

In this section, we present an O(n2 + m +
|A|) algorithm that is similar in spirit to a shift-

reduce algorithm for parsing context-free lan-

guages. This algorithm is not optimal, but its left-

to-right bottom-up control will form the basis for

the improved algorithm in the next section.

First, we can efficiently test whether a span

[x, y] is a phrase as follows. Define a pair of func-

tions l(x, y) and u(x, y) that record the minimum

and maximum, respectively, of the positions on the

French side that are linked to the positions [x, y]:

l(x, y) = min{j | (i, j) ∈ A, i ∈ [x, y]}

u(x, y) = max{j | (i, j) ∈ A, i ∈ [x, y]}

Note that l(·, y) is monotone increasing and u(·, y)
is monotone decreasing. Define a step of l(·, y)
(or u(·, y)) to be a maximal interval over which

l(·, y) (resp., u(·, y)) is constant. We can compute

u(x, y) in constant time from its value on smaller

spans:

u(x, y) = max{u(x, z), u(z + 1, y)}

and similarly for l(x, y).
We define the following functions to count the

number of links emitted from prefixes of F and E:

Fc(j) = |{(i′, j′) ∈ A | j′ ≤ j}|

Ec(i) = |{(i′, j′) ∈ A | i′ ≤ i}|

Then the difference Fc(u) − Fc(l − 1) counts the

total number of links to positions in [l, u], and

Ec(y)−Ec(x−1) counts the total number of links

to positions in [x, y]. Ec and Fc can be precom-

puted in O(n + m + |A|) time.

Finally, let

f(x, y) = Fc(u(x, y))− Fc(l(x, y)− 1)

− (Ec(y)− Ec(x− 1))

Note that f is non-negative, but not monotonic in

general. Figure 4 provides a visualization of u, l,

and f for the example alignment from Section 2.

This gives us our phrase-pair test:

Lemma 3.1. [x, y] and [l(x, y), u(x, y)] are a

phrase pair if and only if f(x, y) = 0.

This test is used in the following shift-reduce-

style algorithm:

X ← {1}

for y ∈ [2, n] from left to right do

append y to X

for x ∈ X from right to left do

compute u(x, y) from u(x + 1, y)
compute l(x, y) from l(x + 1, y)
if f(x, y) = 0 then

[x, y] is a phrase

remove [x + 1, y] from X

end if

end for

end for

In the worst case, at each iteration we traverse

the entire stack X without a successful reduction,

indicating that the worst case time complexity is

O(n2).

4 A Linear Algorithm

In this section, we modify the shift-reduce algo-

rithm into a linear-time algorithm that avoids un-

necessary reduction attempts. It is a generalization

of Uno and Yagiura’s algorithm.

4.1 Motivation

The reason that our previous algorithm is quadratic

is that for each y, we try every possible combina-

tion with the values in X . Uno and Yagiura (2000)

point out that in the case of permutations, it is not

necessary to examine all spans, because it is pos-

sible to delete elements from X so that f(·, y) is

monotone decreasing on X . This means that all

the x ∈ X such that f(x, y) = 0 can always be

conveniently found at the end of X . That this can

be done safely is guaranteed by the following:

Lemma 4.1. If x1 < x2 < y and f(x1, y) <

f(x2, y), then for all y′ ≥ y, f(x2, y
′) > 0 (i.e.,

[x2, y
′] is not a phrase).

Let us say that x2 violates monotonicity if x1

is the predecessor of x2 in X and f(x1, y) <

f(x2, y). Then by Lemma 4.1, we can safely re-

move x2 from X .

Furthermore, Uno and Yagiura (2000) show that

we can enforce monotonicity at all times in such a

way that the whole algorithm runs in linear time.

This is made possible with a shortcut based on the

following:

Lemma 4.2. If x1 < x2 < y and u(x1, y − 1) >

u(x2, y − 1) but u(x1, y) = u(x2, y), then for all

y′ ≥ y, f(x2, y
′) > 0 (i.e., [x2, y

′] is not a phrase).

The same holds mutatis mutandis for l.

Let us say that y updates a step [x′, y′] of u (or

u(·, y − 1)

l(·, y − 1)

u(·, y)

l(·, y)

x
∗

1
y
∗

2

y

x
∗

2
y
∗

1

Figure 3: Illustration of step (3) of the algorithm.

The letters indicate substeps of (3).

l) if u(x′, y) > u(x′, y − 1) (resp., l(x′, y) <

l(x′, y−1)). By Lemma 4.2, if [x1, y1] and [x2, y2]
are different steps of u(·, y− 1) (resp., l(·, y− 1))
and y updates both of them, then we can remove

from X all x′ such that x2 ≤ x′ < y.

4.2 Generalized algorithm

These results generalize to the many-to-many

alignment case, although we must introduce a few

nuances. The new algorithm proceeds as follows:

Initialize X = {1}. For y ∈ [2, n] from left to

right:

1. Append y to X .

2. Update u and l:

(a) Traverse the steps of u(·, y − 1) from

right to left and compute u(·, y) until we

have found the leftmost step [x∗, y∗] of

u(·, y − 1) that gets updated by y.

(b) Do the same for l.

We have computed two values for x∗; let x∗

1

be the smaller and x∗

2 be the larger. Similarly,

let y∗1 be the smaller y∗.

3. Enforce monotonicity of f(·, y) (see Fig-

ure 3):

(a) The positions left of the smaller x∗ al-

ways satisfy monotonicity, so do noth-

ing.

(b) For x ∈ [x∗

1, x
∗

2) ∩ X while x violates

monotonicity, remove x from X .

(c) For x ∈ [x∗

2, y
∗

1] ∩ X while x violates

monotonicity, remove x from X .

(d) The steps right of y∗1 may or may not

violate monotonicity, but we use the

stronger Lemma 4.2 to delete all of them

(excluding y).1

(e) Finally, if y violates monotonicity, re-

move it from X .

4. For x ∈ X from right to left until f(x, y) >

0, output [x, y] and remove x’s successor in

X .2

An example of the algorithm’s execution is

shown in Figure 4. The evolution of u(x, y),
l(x, y), and f(x, y) is displayed for increasing y

(from 1 to 6). We point out the interesting steps.

When y = 2, position 2 is eliminated due to step

(3e) of our algorithm to ensure monotonicity of

f at the right end, and [1, 2] is reduced. When

y = 3, two reductions are made: one on [3, 3] and

the other on [1, 3]. Because of leftmost normaliza-

tion, position 3 is deleted. When y = 6, we have

x∗

1 = x∗

2 = y∗1 = 5, so that position 5 is deleted by

step (3c) and position 6 is deleted by step (3e).

4.3 Correctness

We have already argued in Section 4.1 that the

deletion of elements from X does not alter the out-

put of the algorithm. It remains to show that step

(3) guarantees monotonicity:

Claim 4.3. For all y, at the end of step (3), f(·, y)
is monotone decreasing.

Proof. By induction on y. For y = 1, the claim

is trivially true. For y > 1, we want to show

that for x1, x2 adjacent in X such that x1 < x2,

f(x1, y) ≥ f(x2, y). We consider the five regions

of X covered by step (3) (cf. Figure 3), and then

the boundaries between them.

Region (a): x1, x2 ∈ [1, x∗

1]. Since u(xi, y) =
u(xi, y − 1) and l(xi, y) = l(xi, y − 1), we have:

f(xi, y)−f(xi, y−1) = 0− (Ec(y)−Ec(y−1))

1In the special case where [x∗, y∗] is updated by y to the
same value as the step to its left, we can use Lemma 4.2 to
delete [x∗, y∗] and y as well, bypassing steps (3b),(3c), and
(3e).

2If there are any such x, they must lie to the left of x∗

1.
Therefore a further optimization would be to perform step (4)
before step (3), starting with the predecessor of x∗

1. If a re-
duction is made, we can jump to step (3e).

i.e., in this region, f shifts down uniformly from

iteration y − 1 to iteration y. Hence, if f(·, y −
1) was monotonic, then f(·, y) is also monotonic

within this region.

Region (b): x1, x2 ∈ [x∗

1, x
∗

2). Since u(x1, y −
1) = u(x2, y − 1) and u(x1, y) = u(x2, y) and

similarly for l, we have:

f(x1, y)− f(x1, y− 1) = f(x2, y)− f(x2, y− 1)

i.e., in this region, f shifts up or down uniformly.3

Hence, if f(·, y − 1) was monotonic, then f(·, y)
is also monotonic within this region.

Region (c): x1, x2 ∈ [x∗

2, y
∗

1]. Same as Case 2.

Region (d) and (e): Vacuous (these regions have at

most one element).

The remaining values of x1, x2 are those that

straddle the boundaries between regions. But

step (3) of the algorithm deals with each of

these boundaries explicitly, deleting elements until

f(x1) ≥ f(x2). Thus f(·, y) is monotonic every-

where.

4.4 Implementation and running time

X should be implemented in a way that allows

linear-time traversal and constant-time deletion;

also, u and l must be implemented in a way that

allows linear-time traversal of their steps. Doubly-

linked lists are appropriate for all three functions.

Claim 4.4. The above algorithm runs in O(n +
m + |A|) time.

We can see that the algorithm runs in linear time

if we observe that whenever we traverse a part of

X , we delete it, except for a constant amount of

work per iteration (that is, per value of y): the steps

traversed in (2) are all deleted in (3d) except four

(two for u and two for l); the positions traversed in

(3b), (3c), and (4) are all deleted except one.

4.5 SCFG Rule extraction

The algorithm of the previous section outputs the

normalized decomposition tree depicted in Fig-

ure 2. From this tree, it is straightforward to ob-

tain a set of maximally-decomposed SCFG rules.

As an example, the tree of Figure 2 produces the

rules shown in Figure 5.

3It can be shown further that in this region, f shifts up or
is unchanged. Therefore any reductions in step (4) must be in
region (a).

y = 1 :

1

1

2

2

3

3

4

4

5

5

6

6

7

u, l

x
1

0

2

1

3

2

4

3

5

4

6

5

6

f

x

y = 2 :

1

1

2

2

3

3

4

4

5

5

6

6

7

u, l

x
1

0

2

1

3

2

4

3

5

4

6

5

6

f

x

y = 3 :

1

1

2

2

3

3

4

4

5

5

6

6

7

u, l

x
1

0

2

1

3

2

4

3

5

4

6

5

6

f

x

y = 4 :

1

1

2

2

3

3

4

4

5

5

6

6

7

u, l

x
1

0

2

1

3

2

4

3

5

4

6

5

6

f

x

y = 5 :

1

1

2

2

3

3

4

4

5

5

6

6

7

u, l

x
1

0

2

1

3

2

4

3

5

4

6

5

6

f

x

y = 6 :

1

1

2

2

3

3

4

4

5

5

6

6

7

u, l

x
1

0

2

1

3

2

4

3

5

4

6

5

6

f

x

Figure 4: The evolution of u(x, y) , l(x, y), and f(x, y) as y goes from 1 to 6 for the example alignment.

Each pair of diagrams shows the state of affairs between steps (3) and (4) of the algorithm. Light grey

boxes are the steps of u, and darker grey boxes are the steps of l. We use solid boxes to plot the values

of remaining x’s on the list but also show the other values in empty boxes for completeness.

We adopt the SCFG notation of Satta and Pe-

serico (2005). Each rule has a right-hand side se-

quence for both languages, separated by a comma.

Superscript indices in the right-hand side of gram-

mar rules such as:

A→ B(1) C(2), C(2) B(1)

indicate that the nonterminals with the same index

are linked across the two languages, and will even-

tually be rewritten by the same rule application.

The example above inverts the order of B and C

when translating from the source language to the

target language.

The SCFG rule extraction proceeds as follows.

Assign a nonterminal label to each node in the tree.

Then for each node (S, T) in the tree top-down,

where S and T are sequences of positions,

1. For each child (S′, T ′), S′ and T ′ must be

subsequences of S and T , respectively. Re-

place their occurrences in S and T with a pair

of coindexed nonterminals X ′, where X ′ is

the nonterminal assigned to the child.

2. For each remaining position i in S, replace i

with ei.

3. For each remaining position j in T , replace j

with fj .

4. Output the rule X → S, T , where X is the

nonterminal assigned to the parent.

As an example, consider the node ([4, 6], [1, 3])
in Figure 2. After step 1, it becomes

(4F (1) 6, 1F (1) 3)

A→ B(1) C(2), C(2) B(1)

B → D(1) E(2), E(2) D(1)

D → G(1) e2, f5 G(1) f6

G→ e1, f6

E → e3, f4

C → e4 F (1) e6, f1 F (1) f3

F → e5, f2

Figure 5: Each node from the normalized decom-

position tree of Figure 2 is converted into an SCFG

rule.

and after steps 2 and 3, it becomes

(e4 F (1) e6, f1 F (1) f3)

Finally, step 4 outputs

C → e4 F (1) e6, f1 F (1) f3

A few choices are available to the user depend-

ing on the application intended for the SCFG ex-

traction. The above algorithm starts by assign-

ing a nonterminal to each node in the decompo-

sition tree; one could assign a unique nonterminal

to each node, so that the resulting grammar pro-

duces exactly the set of sentences given as input.

But for machine translation, one may wish to use

a single nonterminal, such that the extracted rules

can recombine freely, as in Chiang (2005).

Unaligned words in either language (an empty

row or column in the alignment matrix, not present

in our example) will be attached as high as possi-

ble in our tree. However, other ways of handling

unaligned words are possible given the decompo-

sition tree. One can produce all SCFG rules con-

sistent with the alignment by, for each unaligned

word, looping through possible attachment points

in the decomposition tree. In this case, the num-

ber of SCFG rules produced may be exponential

in the size of the original input sentence; however,

even in this case, the decomposition tree enables a

rule extraction algorithm that is linear in the output

length (the number of SCFG rules).

4.6 Phrase extraction

We briefly discuss the process of extracting all

phrase pairs consistent with the original alignment

from the normalized decomposition tree. First of

all, every node in the tree gives a valid phrase

pair. Then, in the case of overlapping phrase pairs

such as the example in Section 2.1, the decom-

position tree will contain a left-branching chain

of binary nodes all performing the same permuta-

tion. While traversing the tree, whenever we iden-

tify such a chain, let η1, . . . , ηk be the sequence of

all the children of the nodes in the chain. Then,

each of the subsequences {ηi, . . . , ηj | 1 < i <

j ≤ k} yields a valid phrase pair. In our exam-

ple, the root of the tree of Figure 2 and its left

child form such a chain, with three children; the

subsequence {([3, 3], [4, 4]), ([4, 6], [1, 3])} yields

the phrase ([3, 6], [1, 4]). In the case of unaligned

words, we can also consider all combinations of

their attachments, as discussed for SCFG rule ex-

traction.

5 Experiments on Analyzing Word

Alignments

One application of our factorization algorithm

is analyzing human-annotated word alignments.

Wellington et al. (2006) argue for the necessity

of discontinuous spans (i.e., for a formalism be-

yond Synchronous CFG) in order for synchronous

parsing to cover human-annotated word alignment

data under the constraint that rules have a rank

of no more than two. In a related study, Zhang

and Gildea (2007) analyze the rank of the Syn-

chronous CFG derivation trees needed to parse the

same data. The number of discontinuous spans

and the rank determine the complexity of dynamic

programming algorithms for synchronous parsing

(alignment) or machine translation decoding.

Both studies make simplifying assumptions on

the alignment data to avoid dealing with many-to-

many word links. Here, we apply our alignment

factorization algorithm directly to the alignments

to produce a normalized decomposition tree for

each alignment and collect statistics on the branch-

ing factors of the trees.

We use the same alignment data for the

five language pairs Chinese-English, Romanian-

English, Hindi-English, Spanish-English, and

French-English as Wellington et al. (2006). Ta-

ble 1 reports the number of rules extracted by the

rank, or number of nonterminals on the right-hand

side. Almost all rules are binary, implying both

that binary synchronous grammars are adequate

for MT, and that our algorithm can find such gram-

mars. Table 2 gives similar statistics for the num-

ber of terminals in each rule. The phrases we ex-

tract are short enough that they are likely to gener-

alize to new sentences. The apparent difficulty of

0 1 2 3 4 5 6

Hindi/English 52.8 53.5 99.9 99.9 100.0
Chinese/English 51.0 52.4 99.7 99.8 100.0 100.0 100.0
French/English 52.1 53.5 99.9 100.0 100.0 100.0
Romanian/English 50.8 52.6 99.9 99.9 100.0 100.0
Spanish/English 50.7 51.8 99.9 100.0 100.0 100.0

Table 1: Cumulative percentages of rule tokens by number of nonterminals in right-hand side. A blank

indicates that no rules were found with that number of nonterminals.

0 1 2 3 4 5 6 7 8 9 ≥10 max

Hindi/English 39.6 92.2 97.7 99.5 99.7 99.9 99.9 100.0 7
Chinese/English 39.8 87.2 96.2 99.0 99.7 99.9 100.0 100.0 100.0 100.0 100.0 12
French/English 44.5 89.0 93.4 95.8 97.5 98.4 99.0 99.3 99.6 99.8 100.0 18
Romanian/English 42.9 89.8 96.9 98.9 99.5 99.8 99.9 100.0 100.0 9
Spanish/English 47.5 91.8 97.7 99.4 99.9 99.9 100.0 100.0 100.0 9

Table 2: Cumulative percentages of rule tokens by number of terminals in right-hand side. A blank

indicates that no rules were found with that number of terminals.

the French-English pair is due to the large number

of “possible” alignments in this dataset.

6 Conclusion

By extending the algorithm of Uno and Yagiura

(2000) from one-to-one mappings to many-to-

many mappings, we have shown how to construct

a hierarchical representation of all the phrase pairs

in a given aligned sentence pair in linear time,

which yields a set of minimal SCFG rules. We

have also illustrated how to apply the algorithm as

an analytical tool for aligned bilingual data.

Acknowledgments Thanks to Bob Moore for

suggesting the extension to phrase extraction at

SSST 2007. This work was supported in part by

NSF grants IIS-0546554 and ITR-0428020, and

DARPA grant HR0011-06-C-0022 under BBN

Technologies subcontract 9500008412.

References

Brown, Peter F., Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Bui-Xuan, Binh Minh, Michel Habib, and Christophe
Paul. 2005. Revisiting T. Uno and M. Yagiura’s
algorithm. In The 16th Annual International Sympo-
sium on Algorithms and Computation (ISAAC ’05),
pages 146–155.

Chiang, David. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of ACL 2005, pages 263–270.

Galley, Michel, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proceedings of NAACL 2004.

Landau, Gad M., Laxmi Parida, and Oren Weimann.
2005. Gene proximity analysis across whole
genomes via PQ trees. Journal of Computational
Biology, 12(10):1289–1306.

Och, Franz Josef and Hermann Ney. 2004a. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4).

Och, Franz Josef and Hermann Ney. 2004b. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30:417–449.

Satta, Giorgio and Enoch Peserico. 2005. Some
computational complexity results for synchronous
context-free grammars. In Proceedings of EMNLP
2005, pages 803–810, Vancouver, Canada, October.

Uno, Takeaki and Mutsunori Yagiura. 2000. Fast al-
gorithms to enumerate all common intervals of two
permutations. Algorithmica, 26(2):290–309.

Wellington, Benjamin, Sonjia Waxmonsky, and I. Dan
Melamed. 2006. Empirical lower bounds on the
complexity of translational equivalence. In Proceed-
ings of COLING-ACL 2006.

Zhang, Hao and Daniel Gildea. 2007. Factorization of
synchronous context-free grammars in linear time.
In Proceedings of the NAACL Workshop on Syntax
and Structure in Statistical Translation (SSST).

