
Stochastic Lexicalized Inversion Transduction Grammar for Alignment

Hao Zhang and Daniel Gildea
Computer Science Department

University of Rochester
Rochester, NY 14627

Abstract

We present a version of Inversion Trans-
duction Grammar where rule probabili-
ties are lexicalized throughout the syn-
chronous parse tree, along with pruning
techniques for efficient training. Align-
ment results improve over unlexicalized
ITG on short sentences for which full EM
is feasible, but pruning seems to have a
negative impact on longer sentences.

1 Introduction

The Inversion Transduction Grammar (ITG) of Wu
(1997) is a syntactically motivated algorithm for
producing word-level alignments of pairs of transla-
tionally equivalent sentences in two languages. The
algorithm builds a synchronous parse tree for both
sentences, and assumes that the trees have the same
underlying structure but that the ordering of con-
stituents may differ in the two languages.

This probabilistic, syntax-based approach has in-
spired much subsequent research. Alshawi et al.
(2000) use hierarchical finite-state transducers. In
the tree-to-string model of Yamada and Knight
(2001), a parse tree for one sentence of a transla-
tion pair is projected onto the other string. Melamed
(2003) presents algorithms for synchronous parsing
with more complex grammars, discussing how to
parse grammars with greater than binary branching
and lexicalization of synchronous grammars.

Despite being one of the earliest probabilistic
syntax-based translation models, ITG remains state-
of-the art. Zens and Ney (2003) found that the con-
straints of ITG were a better match to the decod-
ing task than the heuristics used in the IBM decoder

of Berger et al. (1996). Zhang and Gildea (2004)
found ITG to outperform the tree-to-string model for
word-level alignment, as measured against human
gold-standard alignments. One explanation for this
result is that, while a tree representation is helpful
for modeling translation, the trees assigned by the
traditional monolingual parsers (and the treebanks
on which they are trained) may not be optimal for
translation of a specific language pair. ITG has the
advantage of being entirely data-driven – the trees
are derived from an expectation maximization pro-
cedure given only the original strings as input.

In this paper, we extend ITG to condition the
grammar production probabilities on lexical infor-
mation throughout the tree. This model is reminis-
cent of lexicalization as used in modern statistical
parsers, in that a unique head word is chosen for
each constituent in the tree. It differs in that the
head words are chosen through EM rather than de-
terministic rules. This approach is designed to retain
the purely data-driven character of ITG, while giving
the model more information to work with. By condi-
tioning on lexical information, we expect the model
to be able capture the same systematic differences in
languages’ grammars that motivate the tree-to-string
model, for example, SVO vs. SOV word order or
prepositions vs. postpositions, but to be able to do
so in a more fine-grained manner. The interaction
between lexical information and word order also ex-
plains the higher performance of IBM model 4 over
IBM model 3 for alignment.

We begin by presenting the probability model in
the following section, detailing how we address is-
sues of pruning and smoothing that lexicalization in-
troduces. We present alignment results on a parallel
Chinese-English corpus in Section 3.

2 Lexicalization of Inversion Transduction
Grammars

An Inversion Transduction Grammar can generate
pairs of sentences in two languages by recursively
applying context-free bilingual production rules.
Most work on ITG has focused on the 2-normal
form, which consists of unary production rules that
are responsible for generating word pairs:

X → e/f

and binary production rules in two forms that are
responsible for generating syntactic subtree pairs:

X → [Y Z]

and
X → 〈Y Z〉

The rules with square brackets enclosing the right
hand side expand the left hand side symbol into the
two symbols on the right hand side in the same order
in the two languages, whereas the rules with pointed
brackets expand the left hand side symbol into the
two right hand side symbols in reverse order in the
two languages.

One special case of ITG is the bracketing ITG that
has only one nonterminal that instantiates exactly
one straight rule and one inverted rule. The ITG we
apply in our experiments has more structural labels
than the primitive bracketing grammar: it has a start
symbol S, a single preterminal C, and two interme-
diate nonterminals A and B used to ensure that only
one parse can generate any given word-level align-
ment, as discussed by Wu (1997) and Zens and Ney
(2003).

As an example, Figure 1 shows the alignment and
the corresponding parse tree for the sentence pair Je
les vois / I see them using the unambiguous bracket-
ing ITG.

A stochastic ITG can be thought of as a stochastic
CFG extended to the space of bitext. The indepen-
dence assumptions typifying S-CFGs are also valid
for S-ITGs. Therefore, the probability of an S-ITG
parse is calculated as the product of the probabili-
ties of all the instances of rules in the parse tree. For
instance, the probability of the parse in Figure 1 is:

P (S → A) · P (A → [CB])

· P (B → 〈CC〉) · P (C → I/Je)

· P (C → see/vois) · P (C → them/les)

It is important to note that besides the bottom-
level word-pairing rules, the other rules are all non-
lexical, which means the structural alignment com-
ponent of the model is not sensitive to the lexical
contents of subtrees. Although the ITG model can
effectively restrict the space of alignment to make
polynomial time parsing algorithms possible, the
preference for inverted or straight rules only pas-
sively reflect the need of bottom level word align-
ment. We are interested in investigating how much
help it would be if we strengthen the structural align-
ment component by making the orientation choices
dependent on the real lexical pairs that are passed up
from the bottom.

The first step of lexicalization is to associate a lex-
ical pair with each nonterminal. The head word pair
generation rules are designed for this purpose:

X → X(e/f)

The word pair e/f is representative of the lexical
content of X in the two languages.

For binary rules, the mechanism of head selection
is introduced. Now there are 4 forms of binary rules:

X(e/f) → [Y (e/f)Z]

X(e/f) → [Y Z(e/f)]

X(e/f) → 〈Y (e/f)Z〉

X(e/f) → 〈Y Z(e/f)〉

determined by the four possible combinations of
head selections (Y or Z) and orientation selections
(straight or inverted).

The rules for generating lexical pairs at the leaves
of the tree are now predetermined:

X(e/f) → e/f

Putting them all together, we are able to derive a
lexicalized bilingual parse tree for a given sentence
pair. In Figure 2, the example in Figure 1 is revisited.
The probability of the lexicalized parse is:

P (S → S(see/vois))

· P (S(see/vois) → A(see/vois))

· P (A(see/vois) → [CB(see/vois)])

· P (C → C(I/Je))

I

see

them

Je les vois

C

B

C

A

see/vois them/les

I/Je

S

C

Figure 1: ITG Example

I

see

them

Je les vois

S(see/vois)

C(see/vois)C(I/Je)

C

S

C(them/les)

C

B(see/vois)

A(see/vois)

Figure 2: Lexicalized ITG Example. see/vois is the headword of both the 2x2 cell and the entire alignment.

· P (B(see/vois) → 〈C(see/vois)C〉)

· P (C → C(them/les))

The factors of the product are ordered to show
the generative process of the most probable parse.
Starting from the start symbol S, we first choose
the head word pair for S, which is see/vois in the
example. Then, we recursively expand the lexical-
ized head constituents using the lexicalized struc-
tural rules. Since we are only lexicalizing rather than
bilexicalizing the rules, the non-head constituents
need to be lexicalized using head generation rules
so that the top-down generation process can proceed
in all branches. By doing so, word pairs can appear
at all levels of the final parse tree in contrast with the
unlexicalized parse tree in which the word pairs are
generated only at the bottom.

The binary rules are lexicalized rather than bilexi-
calized.1 This is a trade-off between complexity and
expressiveness. After our lexicalization, the number
of lexical rules, thus the number of parameters in the
statistical model, is still at the order of O(|V ||T |),
where |V | and |T | are the vocabulary sizes of the

1In a sense our rules are bilexicalized in that they condition
on words from both languages; however they do not capture
head-modifier relations within a language.

two languages.

2.1 Parsing

Given a bilingual sentence pair, a synchronous parse
can be built using a two-dimensional extension of
chart parsing, where chart items are indexed by their
nonterminal X , head word pair e/f if specified, be-
ginning and ending positions l, m in the source lan-
guage string, and beginning and ending positions i, j
in the target language string. For Expectation Max-
imization training, we compute lexicalized inside
probabilities β(X(e/f), l, m, i, j), as well as un-
lexicalized inside probabilities β(X, l, m, i, j), from
the bottom up as outlined in Algorithm 1.

The algorithm has a complexity of O(N 4
s N4

t),
where Ns and Nt are the lengths of source and tar-
get sentences respectively. The complexity of pars-
ing for an unlexicalized ITG is O(N 3

s N3
t). Lexical-

ization introduces an additional factor of O(NsNt),
caused by the choice of headwords e and f in the
pseudocode.

Assuming that the lengths of the source and target
sentences are proportional, the algorithm has a com-
plexity of O(n8), where n is the average length of
the source and target sentences.

Algorithm 1 LexicalizedITG(s, t)
for all l, m such that 0 ≤ l ≤ m ≤ Ns do

for all i, j such that 0 ≤ i ≤ j ≤ Nt do
for all e ∈ {el+1 . . . em} do

for all f ∈ {fi+1 . . . fj} do
for all n such that l ≤ n ≤ m do

for all k such that i ≤ k ≤ j do
for all rules X → Y Z ∈ G do

β(X(e/f), l, m, i, j) +=
� straight rule, where Y is head

P ([Y (e/f)Z] | X(e/f)) ·β(Y (e/f), l, n, i, k) · β(Z, n, m, k, j)
� inverted rule, where Y is head
+ P (〈Y (e/f)Z〉 | X(e/f)) ·β(Y (e/f), n, m, i, k) · β(Z, l, n, k, j)
� straight rule, where Z is head
+ P ([Y Z(e/f)] | X(e/f)) ·β(Y, l, n, i, k) · β(Z(e/f), n, m, k, j)
� inverted rule, where Z is head
+ P (〈Y Z(e/f)〉 | X(e/f)) ·β(Y, n, m, i, k) · β(Z(e/f), l, n, k, j)

end for
end for

end for
� word pair generation rule
β(X, l, m, i, j) += P (X(e/f) | X) ·β(X(e/f), l, m, i, j)

end for
end for

end for
end for

2.2 Pruning

We need to further restrict the space of alignments
spanned by the source and target strings to make the
algorithm feasible. Our technique involves comput-
ing an estimate of how likely each of the n4 cells in
the chart is before considering all ways of building
the cell by combining smaller subcells. Our figure
of merit for a cell involves an estimate of both the
inside probability of the cell (how likely the words
within the box in both dimensions are to align) and
the outside probability (how likely the words out-
side the box in both dimensions are to align). In in-
cluding an estimate of the outside probability, our
technique is related to A* methods for monolin-
gual parsing (Klein and Manning, 2003), although
our estimate is not guaranteed to be lower than the
complete outside probability assigned by ITG. Fig-
ure 3(a) displays the tic-tac-toe pattern for the in-
side and outside components of a particular cell. We
use IBM Model 1 as our estimate of both the inside

and outside probabilities. In the Model 1 estimate
of the outside probability, source and target words
can align using any combination of points from the
four outside corners of the tic-tac-toe pattern. Thus
in Figure 3(a), there is one solid cell (corresponding
to the Model 1 Viterbi alignment) in each column,
falling either in the upper or lower outside shaded
corner. This can be also be thought of as squeezing
together the four outside corners, creating a new cell
whose probability is estimated using IBM Model
1. Mathematically, our figure of merit for the cell
(l, m, i, j) is a product of the inside Model 1 proba-
bility and the outside Model 1 probability:

P (f (i,j) | e(l,m)) · P (f
(i,j)

| e
(l,m)

) (1)

= λ|(l,m)|,|(i,j)|

∏

t∈(i,j)

∑

s∈{0,(l,m)}

t(ft | es)

· λ
|(l,m)|,|(i,j)|

∏

t∈(i,j)

∑

s∈{0,(l,m)}

t(ft | es)

l

m

i j i j

l

m

i j(a) (b) (c)

Figure 3: The tic-tac-toe figure of merit used for pruning bitext cells. The shaded regions in (a) show
alignments included in the figure of merit for bitext cell (l, m, i, j) (Equation 1); solid black cells show the
Model 1 Viterbi alignment within the shaded area. (b) shows how to compute the inside probability of a
unit-width cell by combining basic cells (Equation 2), and (c) shows how to compute the inside probability
of any cell by combining unit-width cells (Equation 3).

where (l, m) and (i, j) represent the complementary
spans in the two languages. λL1,L2

is the probability
of any word alignment template for a pair of L1-
word source string and L2-word target string, which
we model as a uniform distribution of word-for-
word alignment patterns after a Poisson distribution
of target string’s possible lengths, following Brown
et al. (1993). As an alternative, the

∑
operator can

be replaced by the max operator as the inside opera-
tor over the translation probabilities above, meaning
that we use the Model 1 Viterbi probability as our
estimate, rather than the total Model 1 probability.2

A naı̈ve implementation would take O(n6) steps
of computation, because there are O(n4) cells, each
of which takes O(n2) steps to compute its Model 1
probability. Fortunately, we can exploit the recur-
sive nature of the cells. Let INS(l, m, i, j) denote
the major factor of our Model 1 estimate of a cell’s
inside probability,

∏
t∈(i,j)

∑
s∈{0,(l,m)} t(ft | es). It

turns out that one can compute cells of width one
(i = j) in constant time from a cell of equal width
and lower height:

INS(l, m, j, j) =
∏

t∈(j,j)

∑

s∈{0,(l,m)}

t(ft | es)

=
∑

s∈{0,(l,m)}

t(fj | es)

= INS(l, m − 1, j, j)

+ t(fj | em) (2)

Similarly, one can compute cells of width greater
than one by combining a cell of one smaller width

2The experimental difference of the two alternatives was
small. For our results, we used the max version.

with a cell of width one:

INS(l, m, i, j) =
∏

t∈(i,j)

∑

s∈{0,(l,m)}

t(ft | es)

=
∏

t∈(i,j)

INS(l, m, t, t)

= INS(l, m, i, j − 1)

· INS(l, m, j, j) (3)

Figure 3(b) and (c) illustrate the inductive compu-
tation indicated by the two equations. Each of the
O(n4) inductive steps takes one additive or multi-
plicative computation. A similar dynamic program-
ing technique can be used to efficiently compute the
outside component of the figure of merit. Hence, the
algorithm takes just O(n4) steps to compute the fig-
ure of merit for all cells in the chart.

Once the cells have been scored, there can be
many ways of pruning. In our experiments, we ap-
plied beam ratio pruning to each individual bucket of
cells sharing a common source substring. We prune
cells whose probability is lower than a fixed ratio be-
low the best cell for the same source substring. As a
result, at least one cell will be kept for each source
substring. We safely pruned more than 70% of cells
using 10−5 as the beam ratio for sentences up to 25
words. Note that this pruning technique is applica-
ble to both the lexicalized ITG and the conventional
ITG.

In addition to pruning based on the figure of merit
described above, we use top-k pruning to limit the
number of hypotheses retained for each cell. This
is necessary for lexicalized ITG because the number
of distinct hypotheses in the two-dimensional ITG

chart has increased to O(N 3
s N3

t) from O(N2
s N2

t)
due to the choice one of O(Ns) source language
words and one of O(Nt) target language words as
the head. We keep only the top-k lexicalized items
for a given chart cell of a certain nonterminal Y con-
tained in the cell l, m, i, j. Thus the additional com-
plexity of O(NsNt) will be replaced by a constant
factor.

The two pruning techniques can work for both the
computation of expected counts during the training
process and for the Viterbi-style algorithm for ex-
tracting the most probable parse after training. How-
ever, if we initialize EM from a uniform distribution,
all probabilities are equal on the first iteration, giv-
ing us no basis to make pruning decisions. So, in our
experiments, we initialize the head generation prob-
abilities of the form P (X(e/f) | X) to be the same
as P (e/f | C) from the result of the unlexicalized
ITG training.

2.3 Smoothing

Even though we have controlled the number of pa-
rameters of the model to be at the magnitude of
O(|V ||T |), the problem of data sparseness still ren-
ders a smoothing method necessary. We use back-
ing off smoothing as the solution. The probabilities
of the unary head generation rules are in the form of
P (X(e/f) | X). We simply back them off to the
uniform distribution. The probabilities of the binary
rules, which are conditioned on lexicalized nonter-
minals, however, need to be backed off to the prob-
abilities of generalized rules in the following forms:

P ([Y (∗)Z] | X(∗))

P ([Y Z(∗)] | X(∗))

P (〈Y (∗)Z〉 | X(∗))

P (〈Y Z(∗)〉 | X(∗))

where ∗ stands for any lexical pair. For instance,

P ([Y (e/f)Z] | X(e/f)) =

(1 − λ)PEM ([Y (e/f)Z] | X(e/f))

+ λP ([Y (∗)Z] | X(∗))

where

λ = 1/(1 + Expected Counts(X(e/f)))

The more often X(e/f) occurred, the more reli-
able are the estimated conditional probabilities with
the condition part being X(e/f).

3 Experiments

We trained both the unlexicalized and the lexical-
ized ITGs on a parallel corpus of Chinese-English
newswire text. The Chinese data were automati-
cally segmented into tokens, and English capitaliza-
tion was retained. We replaced words occurring only
once with an unknown word token, resulting in a
Chinese vocabulary of 23,783 words and an English
vocabulary of 27,075 words.

In the first experiment, we restricted ourselves to
sentences of no more than 15 words in either lan-
guage, resulting in a training corpus of 6,984 sen-
tence pairs with a total of 66,681 Chinese words and
74,651 English words. In this experiment, we didn’t
apply the pruning techniques for the lexicalized ITG.

In the second experiment, we enabled the pruning
techniques for the LITG with the beam ratio for the
tic-tac-toe pruning as 10−5 and the number k for the
top-k pruning as 25. We ran the experiments on sen-
tences up to 25 words long in both languages. The
resulting training corpus had 18,773 sentence pairs
with a total of 276,113 Chinese words and 315,415
English words.

We evaluate our translation models in terms of
agreement with human-annotated word-level align-
ments between the sentence pairs. For scoring the
Viterbi alignments of each system against gold-
standard annotated alignments, we use the alignment
error rate (AER) of Och and Ney (2000), which mea-
sures agreement at the level of pairs of words:

AER = 1 −
|A ∩ GP | + |A ∩ GS |

|A| + |GS |

where A is the set of word pairs aligned by the
automatic system, GS is the set marked in the
gold standard as “sure”, and GP is the set marked
as “possible” (including the “sure” pairs). In our
Chinese-English data, only one type of alignment
was marked, meaning that GP = GS .

In our hand-aligned data, 20 sentence pairs are
less than or equal to 15 words in both languages,
and were used as the test set for the first experiment,
and 47 sentence pairs are no longer than 25 words in
either language and were used to evaluate the pruned

Alignment
Precision Recall Error Rate

IBM Model 1 .59 .37 .54
IBM Model 4 .63 .43 .49
ITG .62 .47 .46
Lexicalized ITG .66 .50 .43

Table 1: Alignment results on Chinese-English corpus (≤ 15 words on both sides). Full ITG vs. Full LITG

Alignment
Precision Recall Error Rate

IBM Model 1 .56 .42 .52
IBM Model 4 .67 .43 .47
ITG .68 .52 .40
Lexicalized ITG .69 .51 .41

Table 2: Alignment results on Chinese-English corpus (≤ 25 words on both sides). Full ITG vs. Pruned
LITG

LITG against the unlexicalized ITG.

A separate development set of hand-aligned sen-
tence pairs was used to control overfitting. The sub-
set of up to 15 words in both languages was used for
cross-validating in the first experiment. The subset
of up to 25 words in both languages was used for the
same purpose in the second experiment.

Table 1 compares results using the full (unpruned)
model of unlexicalized ITG with the full model of
lexicalized ITG.

The two models were initialized from uniform
distributions for all rules and were trained until AER
began to rise on our held-out cross-validation data,
which turned out to be 4 iterations for ITG and 3
iterations for LITG.

The results from the second experiment are shown
in Table 2. The performance of the full model of un-
lexicalized ITG is compared with the pruned model
of lexicalized ITG using more training data and eval-
uation data.

Under the same check condition, we trained ITG
for 3 iterations and the pruned LITG for 1 iteration.

For comparison, we also included the results from
IBM Model 1 and Model 4. The numbers of itera-
tions for the training of the IBM models were cho-
sen to be the turning points of AER changing on the
cross-validation data.

4 Discussion

As shown by the numbers in Table 1, the full lexical-
ized model produced promising alignment results on
sentence pairs that have no more than 15 words on
both sides. However, due to its prohibitive O(n8)
computational complexity, our C++ implementation
of the unpruned lexicalized model took more than
500 CPU hours, which were distributed over multi-
ple machines, to finish one iteration of training. The
number of CPU hours would increase to a point that
is unacceptable if we doubled the average sentence
length. Some type of pruning is a must-have. Our
pruned version of LITG controlled the running time
for one iteration to be less than 1200 CPU hours, de-
spite the fact that both the number of sentences and
the average length of sentences were more than dou-
bled. To verify the safety of the tic-tac-toe pruning
technique, we applied it to the unlexicalized ITG us-
ing the same beam ratio (10−5) and found that the
AER on the test data was not changed. However,
whether or not the top-k lexical head pruning tech-
nique is equally safe remains a question. One no-
ticeable implication of this technique for training is
the reliance on initial probabilities of lexical pairs
that are discriminative enough. The comparison of
results for ITG and LITG in Table 2 and the fact that
AER began to rise after only one iteration of train-
ing seem to indicate that keeping few distinct lex-
ical heads caused convergence on a suboptimal set

of parameters, leading to a form of overfitting. In
contrast, overfitting did not seem to be a problem for
LITG in the unpruned experiment of Table 1, despite
the much larger number of parameters for LITG than
for ITG and the smaller training set.

We also want to point out that for a pair of long
sentences, it would be hard to reflect the inherent
bilingual syntactic structure using the lexicalized bi-
nary bracketing parse tree. In Figure 2, A(see/vois)
echoes IP (see/vois) and B(see/vois) echoes
V P (see/vois) so that it means IP (see/vois) is not
inverted from English to French but its right child
V P (see/vois) is inverted. However, for longer sen-
tences with more than 5 levels of bracketing and the
same lexicalized nonterminal repeatedly appearing
at different levels, the correspondences would be-
come less linguistically plausible. We think the lim-
itations of the bracketing grammar are another rea-
son for not being able to improve the AER of longer
sentence pairs after lexicalization.

The space of alignments that is to be considered
by LITG is exactly the space considered by ITG
since the structural rules shared by them define the
alignment space. The lexicalized ITG is designed
to be more sensitive to the lexical influence on the
choices of inversions so that it can find better align-
ments. Wu (1997) demonstrated that for pairs of
sentences that are less than 16 words, the ITG align-
ment space has a good coverage over all possibili-
ties. Hence, it’s reasonable to see a better chance
of improving the alignment result for sentences less
than 16 words.

5 Conclusion

We presented the formal description of a Stochastic
Lexicalized Inversion Transduction Grammar with
its EM training procedure, and proposed specially
designed pruning and smoothing techniques. The
experiments on a parallel corpus of Chinese and En-
glish showed that lexicalization helped for aligning
sentences of up to 15 words on both sides. The prun-
ing and the limitations of the bracketing grammar
may be the reasons that the result on sentences of up
to 25 words on both sides is not better than that of
the unlexicalized ITG.

Acknowledgments We are very grateful to Re-
becca Hwa for assistance with the Chinese-English

data, to Kevin Knight and Daniel Marcu for their
feedback, and to the authors of GIZA. This work
was partially supported by NSF ITR IIS-09325646
and NSF ITR IIS-0428020.

References

Hiyan Alshawi, Srinivas Bangalore, and Shona Douglas.
2000. Learning dependency translation models as col-
lections of finite state head transducers. Computa-
tional Linguistics, 26(1):45–60.

Adam Berger, Peter Brown, Stephen Della Pietra, Vin-
cent Della Pietra, J. R. Fillett, Andrew Kehler, and
Robert Mercer. 1996. Language translation apparatus
and method of using context-based tanslation models.
United States patent 5,510,981.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2):263–311.

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact viterbi parse selection. In Proceed-
ings of the 2003 Meeting of the North American chap-
ter of the Association for Computational Linguistics
(NAACL-03).

I. Dan Melamed. 2003. Multitext grammars and syn-
chronous parsers. In Proceedings of the 2003 Meeting
of the North American chapter of the Association for
Computational Linguistics (NAACL-03), Edmonton.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of the
38th Annual Conference of the Association for Compu-
tational Linguistics (ACL-00), pages 440–447, Hong
Kong, October.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based
statistical translation model. In Proceedings of the
39th Annual Conference of the Association for Com-
putational Linguistics (ACL-01), Toulouse, France.

Richard Zens and Hermann Ney. 2003. A comparative
study on reordering constraints in statistical machine
translation. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,
Sapporo, Japan.

Hao Zhang and Daniel Gildea. 2004. Syntax-based
alignment: Supervised or unsupervised? In Proceed-
ings of the 20th International Conference on Compu-
tational Linguistics (COLING-04), Geneva, Switzer-
land, August.

