Integer Arithmetic and Floating Point

Kai Shen

1

Unsigned Addition

- Operands: w bits
 - u + v
- True sum: w+1 bits
 - UAdd\textsubscript{u}(u, v)
- Discard carry: w bits

- Semantics: standard addition, but ignore overflowed carry
 - Still commutative and associative
 - Implements modular arithmetic

\[
UAdd\textsubscript{u}(u, v) = \begin{cases} \ & u + v & u + v < 2^w \\ \ & u + v - 2^w & u + v \geq 2^w \end{cases}
\]

2

Two’s Complement Addition

- Operands: w bits
 - u + v
- True sum: w+1 bits
 - TAdd\textsubscript{w}(u, v)
- Discard carry: w bits

- TAdd and UAdd have identical bit-level computation
 - Signed vs. unsigned addition in C:
 \[
 \text{int } s, t, u, v; \\
 s = \text{(int)} ((\text{unsigned}) u + (\text{unsigned}) v); \\
 t = u + v
 \]
 - Will give s == t
TAdd Overflow

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

- **Semantics**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2's comp. integer

- **Formula**
 \[
 TAdd_w(u,v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \\
 u + v & TMin_u \leq u + v \leq TMax_u \\
 u + v - 2^w & TMax_u < u + v \leq TMin_v
 \end{cases}
 \]

Negation: Complement & Increment

- **Semantics of negation (\(-x\))**
 - Only meaningful for signed integer
 - \(TMIN \) is smallest negative integer, what is \(-TMIN\)?
- **Claim** for 2's complement
 \(-x + 1 = -x\)
- **Complement**
 - Observation: \(-x + x = 1111...111 = -1\)
 - \(x + \sim x = 01100010\)
 - \(-x = 10011111\)

Unsigned Multiplication

- **Operands**: \(w \) bits
- **Semantics**: standard multiplication, but ignore high order \(w \) bits
- **Implements**: modular arithmetic
 \[\text{UMult}_w(u,v) = u \cdot v \mod 2^w\]

Signed Multiplication

- **Under 2's complement**, same bit-level computation as in unsigned case
Code Security Example

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
    /* Allocate buffer for ele_cnt objects, each of ele_size bytes */
    void *result = malloc(ele_cnt * ele_size);
    if (result == NULL) {
        /* malloc failed */
        return NULL;
    }
    void *next = result;
    int i;
    for (i = 0; i < ele_cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele_src[i], ele_size);
        /* Move pointer to next memory region */
        next += ele_size;
    }
    return result;
}
```

Power-of-2 Multiply with Shift

- **Multiply** is slow on most machines
- **Operation**
 - \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned
 - Operands: \(w \) bits
 - True product: \(w + k \) bits
 - Discard \(k \) bits: \(w \) bits
- **Examples**
 - \(u \ll 3 = u \times 8 \)
 - \(u \ll 5 - u \ll 3 = u \times 24 \)

Compiled Multiplication Code

C Function

```c
int mull2(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

- `leal (%eax, %eax, 2), %eax`
- `sall 02, %eax`
-`t = x+x*2
- `return t << 2;`

- C compiler automatically generates shift/add code when multiplying by constant

Division

- **Integer division**: divide one integer over another, output an integer
- **Semantics**:
 - Like standard division
 - No overflow problem (except divide by zero)
 - Round toward zero (round down on positive side, round up on negative side)
- **Implementation** for signed/unsigned division is very different
- Division is slower than multiply, so converting to shift etc. will help even more
Unsigned Power-of-2 Divide with Shift

- Quotient of unsigned by power of 2
 - \(u >> k \) gives \(\lfloor \frac{u}{2^k} \rfloor \)
 - Uses logical shift

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Divisor</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>15213</td>
<td>15213</td>
<td>1</td>
</tr>
<tr>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
</tr>
<tr>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
</tr>
<tr>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
</tr>
</tbody>
</table>

Signed Power-of-2 Divide with Shift

- Quotient of signed by power of 2
 - \(x >> k \) gives \(\lfloor \frac{x}{2^k} \rfloor \)
 - Uses arithmetic shift
 - Rounds wrong direction when \(u < 0 \)

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Divisor</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15213</td>
<td>-15213</td>
<td>C4 93</td>
</tr>
<tr>
<td>-7606.5</td>
<td>-7607</td>
<td>B2 49</td>
</tr>
<tr>
<td>-950.8125</td>
<td>-951</td>
<td>FC 49</td>
</tr>
<tr>
<td>-59.4257813</td>
<td>-60</td>
<td>FF C4</td>
</tr>
</tbody>
</table>

Correct Power-of-2 Divide

- Quotient of negative number by power of 2
 - Want \(\lceil \frac{x}{2^k} \rceil \) (Round Toward 0)
 - Compute as \(\lceil \frac{x}{2^k} \rceil \)
 - In C: \((x + (1 << k) - 1) / 2^k \)

<table>
<thead>
<tr>
<th>Dividend</th>
<th>Divisor</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>int x</td>
<td>foo()</td>
<td>int y</td>
</tr>
<tr>
<td>unsigned x</td>
<td>= x;</td>
<td>unsigned y</td>
</tr>
</tbody>
</table>

Initialization

```
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

- \(ux >= 0 \)
- \(ux > -1 \)
- \(x > 0 \&\& y > 0 \Rightarrow x + y > 0 \)
- \(ux >> 3 == ux/8 \)
- \(x >> 3 == x/8 \)
Floating Point
- Background: fractional binary numbers
- Bit representation: IEEE floating point standard
- Rounding, addition, multiplication

Fractional Binary Numbers
- What is 1011.1012?
- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number: \(\sum_{j} b_j \times 2^j \)

Fractional Binary Numbers: Examples
- **Value** | **Representation**
 - 5 & 3/4 | 101.112
 - 2 & 7/8 | 10.1112
 - 1 & 7/16 | 1.01112

Representable Numbers
- Limitation
 - Can only exactly represent numbers of the form \(x/2^k \)
 - Other rational numbers have repeating bit representations
- **Value** | **Representation**
 - 1/3 | 0.0101010101[01]…2
 - 1/5 | 0.001100110011[0011]…2
 - 1/10 | 0.000110011001[0011]…2

Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - \(1/2 + 1/4 + 1/8 + ... + 1/2^j + ... \rightarrow 1.0 \)
 - Use notation 1.0 – ε
Bits Representation of Fractional Binary Numbers

- How?
 - Think about the limited number of bits we have

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point representation
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- Numerical form: $$(-1)^s M 2^E$$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

Precisions

- Single precision: 32 bits
 - s exp frac
 - 1 8-bits 23-bits

- Double precision: 64 bits
 - s exp frac
 - 1 11-bits 52-bits

- Extended precision: 80 bits (Intel only)
 - s exp frac
 - 1 15-bits 63 or 64-bits
Normalized Values

- Condition: \(\text{exp} \neq 000...0 \) and \(\text{exp} \neq 111...1 \)
- Exponent coded as \textit{biased} value: \(E = \text{Exp} – \text{Bias} \)
 - \(\text{Exp} \): unsigned value \(\text{exp} \)
 - \(\text{Bias} = 2^{k-1} - 1 \), where \(k \) is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: \(M = 1 \times \text{x...x} \)
 - Minimum when 000...0 (\(M = 1.0 \))
 - Maximum when 111...1 (\(M = 2.0 – \varepsilon \))
 - Get extra leading bit for "free"

Normalized Encoding Example

- \(\text{float F} = 15213.0; \)
 - 1521310 = 111011011011012 = 1 1101101101101 x 2^{13}
 - Significand \(M = 1.1101101101101 \)
 - Fraction \(\text{frac} = 110110110110100000000002 \)
 - Exponent \(E = 13 \)
 - Bias = 127
 - \(\text{Exp} = 140 = 1001100, \)
- Result:
 \[\begin{array}{cccc}
 \text{s} & \text{exp} & \text{frac} \\
 \hline
 0 & 10001100 & 11011011011010000000000 \\
 \end{array} \]

Denormalized Values

- Condition: \(\text{exp} = 000…0 \)
- Significand coded with implied leading 0: \(M = 0.x...x \)
 - Equispaced leading to 0
- Exponent value: \(E = 1 – \text{Bias} \) (instead of \(E = 0 – \text{Bias} \))
 - Smooth transition between largest value of \(\text{exp} = 00...00 \) and smallest value of \(\text{exp} = 00...01 \)
- Special case: \(\text{exp} = 000…0, \text{frac} = 000…0 \)
 - Represents zero value (distinct +0 and –0)

Special Values

- Condition: \(\text{exp} = 111...1 \)
- Case: \(\text{exp} = 111...1, \text{frac} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., 1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty
- Case: \(\text{exp} = 111...1, \text{frac} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), \(\infty \cdot \infty, \infty \times 0 \)
Tiny Floating Point Example

- 8-bit floating point representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>000</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td>0</td>
<td>0010</td>
<td>110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td>0</td>
<td>0010</td>
<td>111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>000</td>
<td>0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>110</td>
<td>7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>111</td>
<td>7</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td>0</td>
<td>1111</td>
<td>000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

Interesting Numbers

- Single, double

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>2^(-23,52) x 2^(-126,1022)</td>
</tr>
<tr>
<td>Single</td>
<td>1.4 x 10^-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>4.9 x 10^-324</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>(2.0 - e) x 2^(127,1023)</td>
</tr>
<tr>
<td>Single</td>
<td>3.4 x 10^38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>1.8 x 10^38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special Properties of Encoding

- Floating point zero same as integer zero
 - All bits = 0
- Can (almost) use unsigned integer comparison
 - Must first compare sign bits
 - Must consider ~0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Floating Point Operations: Basic Idea

- \(x + y = \text{Round}(x + y) \)
- \(x \times y = \text{Round}(x \times y) \)

Basic idea:
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into \(\text{frac} \)

Rounding

- Rounding modes (illustrate with \$\text{rounding}\$

 - Towards zero
 - Round down \((-\infty)\)
 - Round up \((+\infty)\)
 - Nearest even (default)

Nearest even:
- Round to nearest acceptable point
- When exactly halfway between two adjacent points, round so that least significant digit is even

Why?
- Statistically unbiased, even digit is easier to represent

Floating Point Addition

\[
(-1)^s M_1 \, 2^{E_1} + (-1)^r M_2 \, 2^{E_2}
\]

Assume \(E_1 > E_2 \)

- Exact result: \((-1)^s M \, 2^E\)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \):
 - \(E_1 \)

Fixing:
- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- If \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit \(\text{frac} \) precision

Properties of FP Add

- Commutative?
- Associative?
 - Overflow and inexactness of rounding
 - \((1e20 + -1e20) + 3.14 = 3.14\)
 - \(1e20 + (-1e20 + 3.14) = ??\)
- Monotonicity: \(a \geq b \Rightarrow a+c \geq b+c \)?
 - Except for infinities & NaNs
Floating Point Multiplication

- \((-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2}\)
- Exact result: \((-1)^s M 2^E\)
 - Sign \(s\): \(s_1 \land s_2\)
 - Significand \(M\): \(M_1 \times M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

Fixing
- If \(M \geq 2\), shift \(M\) right, increment \(E\)
- If \(E\) out of range, overflow
- Round \(M\) to fit \texttt{frac} precision

Implementation
- Biggest chore is multiplying significands

Mathematical Properties of FP Mult

- Multiplication is commutative?
- Multiplication is associative?
 - Possibility of overflow, inexactness of rounding
- Monotonicity: \(a \geq b \land c \geq 0 \Rightarrow a \times c \geq b \times c\)
 - Except for infinities & NaNs

Floating Point in C

- C guarantees two levels
 - \texttt{float} single precision
 - \texttt{double} double precision
- Conversions/casting
 - Casting between \texttt{int}, \texttt{float}, and \texttt{double} changes bit representation
 - \texttt{double/float \to int}
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMIn
 - \texttt{int \to double}
 - Exact conversion, as long as \texttt{int} has \(\leq 53\) bit word size
 - \texttt{int \to float}
 - Will round according to rounding mode

Disclaimer

These slides were adapted from the CMU course slides provided along with the textbook of “Computer Systems: A programmer’s Perspective” by Bryant and O’Hallaron. The slides are intended for the sole purpose of teaching the computer organization course at the University of Rochester.