
Computer Organization 2/28/2015

CSC 252 - Spring 2015 1

2/28/2015 1

CSC 252:

Processor Architecture

Guest Lecture

by

Sandhya Dwarkadas

2/28/2015 2

Instruction Set Architecture
• Assembly Language View

– Processor state

• Registers, memory, …

– Instructions

• addl, movl, leal, …

• How instructions are encoded as

bytes

• Layer of Abstraction

– Above: how to program machine

• Processor executes instructions in

a sequence

– Below: what needs to be built

• Use variety of tricks to make it run

fast

• E.g., execute multiple instructions

simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

2/28/2015 3

Basic Issues in Instruction Set Design

Goal: find a language that makes it easy to build

both the hardware and the compiler while

maximizing performance and minimizing cost

• What operations (and how many) should be

provided

• How (and how many) operands are specified

• What data types and sizes

• How to encode these into consistent instruction

formats

2/28/2015 4

Overview of Logic Design

• Fundamental Hardware Requirements

– Communication

• How to get values from one place to another

– Computation

– Storage

• Bits are Our Friends

– Everything expressed in terms of values 0 and 1

– Communication

• Low or high voltage on wire

– Computation

• Compute Boolean functions

– Storage

• Store bits of information

Computer Organization 2/28/2015

CSC 252 - Spring 2015 2

2/28/2015 5

Computing with Logic Gates

–Outputs are Boolean functions of inputs

–Respond continuously to changes in inputs

• With some, small delay

a

b
out

a

b
out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

Transistor

basic electrical switch

three terminal switch: gate, source, drain

voltage between gate and source exceeds threshold
switch is conducting or "closed"
electrons flow between source and drain

when voltage is removed,
the switch is "open" or non-conducting
connection between source and drain is broken

voltage-controlled switch

MOS Technology

Gate

Drain Source

Physical Implementation

Circuit that implements logical negation (NOT)

1 at input yields 0 at output
0 at input yields 1 at output

Inverter behavior as a function of input voltage
input ramps from 0V to Vdd
output holds at Vdd for some range of small

input voltages
then changes rapidly, but not instantaneously!

V Out

+5

0 +5 V In

Logic 0 Input
V oltage

Logic 1 Input
V oltage

Building upon transistor switches, we can construct logic gates that

implement various logic operations such as AND, OR, and NOT

Logic gates -- physical devices that operate over electrical voltages rather

than symbols like 1 and 0.

Typical logic gate interprets voltages near Vdd as a logic 1 and those near 0V

as a logic 0.

Inverter

2/28/2015 8

PMOS

NMOS

Computer Organization 2/28/2015

CSC 252 - Spring 2015 3

Digital Design Representation
1. Switches

A switch connects two points (small circles) under control
signal (arrow w/ line through it).

when the control signal is 0 (false), the switch is open

when it is 1 (true), the switch is closed

when control is 1 (true), switch is open

when control is 0 (false), switch is closed

Normally Closed

Normally Open

Open
Switch

Control

Normally Open
Switch

Closed
Switch

T rue

False

Open
Switch

Control

Normally Closed
Switch

Closed
Switch

T rue

False

A

False

T rue

output

B A

False

T rue

output

B

AND function

Series connection to TRUE

OR function

Parallel connection to TRUE

Series connection of Normally open -- AND

Parallel connection of Normally open -- OR

Implementation of AND and OR

Functions with Switches

2/28/2015 11

Combinational Circuits

• Acyclic Network of Logic Gates

– Continously responds to changes on primary inputs

– Primary outputs become (after some delay)

Boolean functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs

2/28/2015 12

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit

–Combinational logic

• Continuously responding to inputs

–Control signal selects function computed

• Corresponding to 4 arithmetic/logical operations in

Y86

–Also computes values for condition codes

A

L

U

Y

X

X + Y

0

A

L

U

Y

X

X - Y

1

A

L

U

Y

X

X & Y

2

A

L

U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B

Computer Organization 2/28/2015

CSC 252 - Spring 2015 4

2/28/2015 13

Sequential Logic: Memory and Control

• Sequential:

– Output depends on the current input

values and the previous sequence of input

values.

– Are Cyclic:

• Output of a gate feeds its input at some future

time.

– Memory:

• Remember results of previous operations

• Use them as inputs.

– Example of use:

• Build registers and memory units.
2/28/2015 14

Clocks

• Signal used to synchronize activity in a

processor

• Every operation must be completed in the time

between two clock pulses (or rising edges) ---

the cycle time

• Maximum clock rate (frequency) determined by

the slowest logic path in the circuit (the critical

path)

Clock

2/28/2015 15

Edge-Triggered Latch

– Only in latching mode for

brief period

• Rising clock edge

– Value latched depends on

data as clock rises

– Output remains stable at

all other times

Q+

Q–

R

S

D

C

Data

Clock
T
Trigger

C

D

Q+

Time

T

2/28/2015 16

Registers

– Stores word of data

• Different from program registers seen in assembly code

– Collection of edge-triggered latches

– Loads input on rising edge of clock

I O

Clock

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

i7

i6

i5

i4

i3

i2

i1

i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

Structure

Computer Organization 2/28/2015

CSC 252 - Spring 2015 5

2/28/2015 17

Register Operation

–Stores data bits

–For most of time acts as barrier between input

and output

–As clock rises, loads input

State = x

Rising

clock


Output = xInput = y

x


State = y

Output = y

y

2/28/2015 18

State Machine Example

–Accumulator

circuit

–Load or

accumulate

on each

cycle

Comb. Logic

A

L

U

0

Out

MUX

0

1

Clock

In

Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out

2/28/2015 19

Random-Access Memory

– Stores multiple words of memory

• Address input specifies which word to read or write

– Register file

• Holds values of program registers

• %eax, %esp, etc.

• Register identifier serves as address

– ID 8 implies no read or write performed

– Multiple Ports

• Can read and/or write multiple words in one cycle

– Each has separate address and data input/output

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock

2/28/2015 20

Register File Timing
• Reading

– Like combinational logic

– Output data generated based on

input address

• After some delay

• Writing

– Like register

– Update only as clock rises

Register

file

A

B

srcA

valA

srcB

valB

y

2
Register

file
W

dstW

valW

Clock

x2

Rising

clock
 

Register

file
W

dstW

valW

Clock

y2

x2

x

2

Computer Organization 2/28/2015

CSC 252 - Spring 2015 6

2/28/2015 21

Building Blocks

• Combinational Logic

– Compute Boolean functions of

inputs

– Continuously respond to input

changes

– Operate on data and implement

control

• Storage Elements

– Store bits

– Addressable memories

– Non-addressable registers

– Loaded only as clock rises

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Clock

A

L

U

fun

A

B

MUX

0

1

=

Clock

2/28/2015 22

SEQ Hardware

Structure
• State

– Program counter register (PC)

– Condition code register (CC)

– Register File

– Memories

• Access same memory space

• Data: for reading/writing program

data

• Instruction: for reading instructions

• Instruction Flow

– Read instruction at address

specified by PC

– Process through stages

– Update program counter

Instruction

memory

Instruction
memory

PC

increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Bch

valE

Addr, Data

valM

PC
valE, valM

newPC

2/28/2015 23

SEQ Stages

• Fetch

– Read instruction from instruction

memory

• Decode

– Read program registers

• Execute

– Compute value or address

• Memory

– Read or write data

• Write Back

– Write program registers

• PC

– Update program counter
Instruction

memory

Instruction

memory
PC

increment

PC

increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun

rA , rB
valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Bch

valE

Addr, Data

valM

PC
valE, valM

newPC

2/28/2015 24

Instruction Decoding

• Instruction Format

– Instruction byte icode:ifun

– Optional register byte rA:rB

– Optional constant word valC

5 0 rA rB D

icode

ifun

rA

rB

valC

Optional Optional

Computer Organization 2/28/2015

CSC 252 - Spring 2015 7

2/28/2015 25

Executing Arith./Logical Operation

•Fetch

– Read 2 bytes

•Decode

– Read operand

registers

•Execute

– Perform operation

– Set condition codes

•Memory

– Do nothing

•Write back

– Update register

•PC Update

– Increment PC by 2

OPl rA, rB 6 fn rA rB

2/28/2015 26

Possible Implementation Strategies

• Single-cycle control

• Multi-cycle control

• Pipelined (in-order execution)

• Superscalar and out-of-order execution

2/28/2015 27

Single-Cycle Control

• Cannot use any hardware unit twice in one cycle

– Multiple datapath elements (e.g., ALU and PC

incrementer) if needed for multiple purposes

– Multiple reads or writes to memory or register

file require multiporting

• Clock cycle must accommodate instruction with

the longest latency

2/28/2015 28

Multi-cycle Control

• Split single instruction into multiple pieces

• Execute individual pieces using hardwired finite

state machine (FSM) or microprogramming

• Can finish simple instructions in fewer cycles

• Can run clock faster

• Still execute a single instruction at a time

Computer Organization 2/28/2015

CSC 252 - Spring 2015 8

2/28/2015 29

Pipelined Datapath

• Multiple instructions overlapped in execution

• Improve throughput, not individual instruction execution

time

• Exploit parallelism among instructions in a sequential

stream

• Balance length of each stage. Ideally -
– Time between instrs pipelined = Time between instrs non-pipelined /Number of pipe stages

2/28/2015 30

Computational Example

• System

– Computation requires total of 300 picoseconds

– Additional 20 picoseconds to save result in register

– Must have clock cycle of at least 320 ps

Combinational

logic

R

e

g

300 ps 20 ps

Clock

Delay = 320 ps

Throughput = 3.12 GOPS

2/28/2015 31

3-Way Pipelined Version

• System

– Divide combinational logic into 3 blocks of 100 ps each

– Can begin new operation as soon as previous one passes

through stage A.

• Begin new operation every 120 ps

– Overall latency increases

• 360 ps from start to finish

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps

Throughput = 8.33 GOPS

2/28/2015 32

Pipeline Diagrams

• Unpipelined

– Cannot start new operation until previous one completes

• 3-Way Pipelined

– Up to 3 operations in process simultaneously

Time

OP1

OP2

OP3

Time

A B C

A B C

A B C

OP1

OP2

OP3

Computer Organization 2/28/2015

CSC 252 - Spring 2015 9

2/28/2015 33

Operating a Pipeline

Time

OP1

OP2

OP3

A B C

A B C

A B C

0 120 240 360 480 640

Clock

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

R

e

g

R

e

g

R

e

g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.

logic

A

Comb.

logic

B

Comb.

logic

C

Clock

300

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359

2/28/2015 34

Limitations: Nonuniform Delays

–Throughput limited by slowest stage

–Other stages sit idle for much of the time

–Challenging to partition system into balanced

stages

R

e

g

Clock

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps

Throughput = 5.88 GOPS

Comb.

logic

A

Time

OP1

OP2

OP3

A B C

A B C

A B C

2/28/2015 35

Limitations: Register Overhead

– As we try to deepen pipeline, overhead of loading registers

becomes more significant

– Percentage of clock cycle spent loading register:

• 1-stage pipeline: 6.25%

• 3-stage pipeline: 16.67%

• 6-stage pipeline: 28.57%

– High speeds of modern processor designs obtained through very

deep pipelining

Delay = 420 ps, Throughput = 14.29 GOPSClock

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

2/28/2015 36

Hazards

• Structural (e.g., instruction/data fetch)

• Control (e.g., jeq)

• Data (e.g., add followed by sub reading dst

register of add)

Computer Organization 2/28/2015

CSC 252 - Spring 2015 10

2/28/2015 37

Data Dependencies

• System

–Each operation depends on result from

preceding one

Clock

Combinational

logic

R

e

g

Time

OP1

OP2

OP3

2/28/2015 38

Data Hazards

–Result does not feed back around in time for

next operation

–Pipelining has changed behavior of system

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

Time

OP1

OP2

OP3

A B C

A B C

A B C

OP4 A B C

2/28/2015 39

Data Dependencies in Processors

– Result from one instruction used as operand for

another

• Read-after-write (RAW) dependency

– Very common in actual programs

– Must make sure our pipeline handles these properly

• Get correct results

• Minimize performance impact

1 irmovl $50, %eax

2 addl %eax , %ebx

3 mrmovl 100(%ebx), %edx

2/28/2015 40

Pipeline Summary
• Data Hazards

– Most handled by forwarding

• No performance penalty

– Load/use hazard requires one cycle stall

• Control Hazards

– Cancel instructions when detect mispredicted branch

• Two clock cycles wasted

– Stall fetch stage while ret passes through pipeline

• Three clock cycles wasted

• Control Combinations

– Must analyze carefully

– Watch for subtle bugs that only arises with unusual instruction

combination

Computer Organization 2/28/2015

CSC 252 - Spring 2015 11

2/28/2015 41

Modern CPU Design

ExecutionExecution

Functional

Units

Instruction ControlInstruction Control

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Instruction

Cache

Data

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Retirement

Unit

Register

File

Register

Updates

2/28/2015 42

Instruction-level Parallelism

• Pipelining/super-pipelining

• Out-of-order execution

• Super-scalar

– multiple instructions per pipeline stage

– Dependences handled in hardware

• Very Large Instruction Word (VLIW)

– Multiple instructions per pipeline stage

– Dependences taken care of by compiler

2/28/2015 43

Execution

Unit

– Multiple functional units

• Each can operate independently

– Operations performed as soon as operands available

• Not necessarily in program order

• Within limits of functional units

– Control logic

• Ensures behavior equivalent to sequential program execution

ExecutionExecution

Functional

Units

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Data

Cache

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Register

Updates
Operations

2/28/2015 44

Data Hazards: Forwarding

• The CDC 6600 Score-board architecture

• Tomasulo’s generalized forwarding algorithm in

the IBM360

– Used reservation stations and shared buses

Computer Organization 2/28/2015

CSC 252 - Spring 2015 12

2/28/2015 45

Advanced Processor Design

Techniques

• Trace caches

• Register renaming – eliminate WAW, WAR hazards

– Register map table

– Free list

– Active list

• Speculative execution

• Value prediction

• Branch prediction

– Branch history tables for prediction

– Branch stack to save state prior to branch

– Branch mask to determine instructions that must be
squashed

2/28/2015 46

Processor Summary

• Design Technique

– Create uniform framework for all instructions

• Want to share hardware among instructions

– Connect standard logic blocks with bits of control logic

• Operation

– State held in memories and clocked registers

– Computation done by combinational logic

– Clocking of registers/memories sufficient to control overall

behavior

• Enhancing Performance

– Pipelining increases throughput and improves resource

utilization

– Must make sure maintains ISA behavior

2/28/2015 47

Disclaimer

• Parts of the slides were developed by and
borrowed from slides the following textbook
authors: Dave O’Hallaron and Randy Bryant,
and Randy Katz. The slides are intended for
the sole purpose of instruction of computer
organization at the University of Rochester.
All copyrighted materials belong to their
original owner(s).

