Computer Organization

CSC 252:
Processor Architecture

Guest Lecture

by
Sandhya Dwarkadas

2/28/2015

2/28/2015

Instruction Set Architecture

Assembly Language View

— Processor state Application
* Registers, memory, ... Program
— Instructions

* addl,movl, leal, ... Compiler| OS

» How instructions are encoded as

bytes
Layer of Abstraction CPU
. Design
— Above: how to program machine
» Processor executes instructions in Circuit
a sequence Design
— Below: what needs to be built Chip
*+ Use variety of tricks to make it run Layout
fast

» E.g., execute multiple instructions
simultaneously

provided

* What data types and sizes

formats

2/28/2015

Basic Issues in Instruction Set Design

Goal: find a language that makes it easy to build
both the hardware and the compiler while
maximizing performance and minimizing cost

* What operations (and how many) should be

* How (and how many) operands are specified

* How to encode these into consistent instruction

Overview of Logic Design

Fundamental Hardware Requirements
— Communication
« How to get values from one place to another
— Computation
— Storage
Bits are Our Friends
— Everything expressed in terms of values 0 and 1
— Communication
« Low or high voltage on wire
— Computation
« Compute Boolean functions
— Storage
« Store bits of information

2/28/2015

CSC 252 - Spring 2015

2/28/2015

Computer Organization 2/28/2015

Computing with Logic Gates Physical Implementafion

Not MOS Technology G G

Transistor

And or '
a — a i i a
out out a —‘>o- out basic electrical switch ~ Gate e J
b b e
out=as&& b out=a||b out='a Drain Source

—Outputs are Boolean functions of inputs
—Respond continuously to changes in inputs

three terminal switch: gate, source, drain

voltage between gate and source exceeds threshold

» With some, small delay switch is conducting or “closed"
Rising Delay Falling Delay electrons flow between source and drain
e as&hb

when voltage is removed,
p ; the switch is "open" or non-conducting
3 H : connection between source and drain is broken

Voltage
9 voltage-controlled switch

2/28/2015

Building upon transistor switches, we can construct logic gates that Inve rter
implement various logic operations such as AND, OR, and NOT

Logic gates -- physical devices that operate over electrical voltages rather
than symbols like 1 and 0.

Typical logic gate interprets voltages near Vdd as a logic 1 and those near OV vdd
as a logic 0.
Circuit that implements logical negation (NOT) [: PMOS
Logic 0 Input 1 at input yields 0 at output A +—0Q
+5 \bltage 0 at input yields 1 at output
Inverter behavior as a function of input voltage l: NMOS
input ramps from OV to Vdd
Vou) output holds at Vdd for some range of small Vss
Logic 1 Input input voltages
Voltage then changes rapidly, but not instantaneously!
0 Vi 45 2/28/2015 8

CSC 252 - Spring 2015 2

Computer Organization 2/28/2015

Digital Design Representation -
L suaches =9 gn ep Implementation of AND and OR
A switch connects two points (small circles) under control . . .
signal (arrow w/ line through it). Fu nC'“OnS W|th SWltCheS
Normally Open when the control signal is O (false), the switch is open A B a B
when itis 1 (true), the switch is closed False f output False o output
N lly Closed . L - 1
ormal ose when control is 1 (true), switch is open - -_// /_‘ e E/
when control is O (false), switch is closed
e True AND function OR function
Series connection to TRUE Parallel connection to TRUE
° —o
Control Closed Control Open
, Switch Switch Series connection of Normally open -- AND
—_ °
False False Parallel connection of Normally open -- OR
Normally Open Normally Closed
Switch /I’ Switch
—0
Open Closed
Switch Switch
Combinational Circuits Arithmetic Logic Unit
Acyclic Network
I
Primary D D Primary
Inputs Outputs
D
1>
4>
—Combinational logic
* Acyclic Network of Logic Gates « Continuously responding to inputs
— Continously responds to changes on primary inputs —Control signal selects function computed
— Primary outputs become (after some delay) « Corresponding to 4 arithmetic/logical operations in
Boolean functions of primary inputs
Y86
zaerzons . 2282%°Also computes values for condition codes

CSC 252 - Spring 2015

Computer Organization

Sequential Logic: Memory and Control

+ Sequential:

— Output depends on the current input
values and the previous sequence of input
values.

— Are Cyclic:

» Output of a gate feeds its input at some future
time.

— Memory:
* Remember results of previous operations
» Use them as inputs.

— Example of use:

2/28/2015 . . . 13
* Build registers and memory units.

Clocks

 Signal used to synchronize activity in a
processor

» Every operation must be completed in the time
between two clock pulses (or rising edges) ---
the cycle time

+ Maximum clock rate (frequency) determined by
the slowest logic path in the circuit (the critical
path)

Clock |

2/28/2015 14

Edge-Triggered Latch

Dat: X
ata
Q+
e[y -
C S
Clock T,
Trigger
c—,—\— — Only in latching mode for
brief period
T « Rising clock edge
D — Value latched depends on
data as clock rises
Q+—'_ — Output remains stable at
Time all other times
2/28/2015 15

CSC 252 - Spring 2015

«Registers

07

Og

Os

04 | o
O3

0,

0, Clock

W
oo[oo[oo[oofoceo]oo]a
olole|lole]le]|e
PIP|IP|12|17|3]7

Qo

Clock
— Stores word of data

« Different from program registers seen in assembly code
— Collection of edge-triggered latches

— Loads input on rising edge of clock

2/28/2015 16

2/28/2015

Computer Organization

Register Operation

State = x State =y
Input =y Output = x E> Fillzlgf |:> Output =y
=DIX—> j =Dy~

—Stores data bits

—For most of time acts as barrier between input
and output

—As clock rises, loads input

2/28/2015 v

State Machine Example

Comb. Logic
0

—Accumulator

| Out circuit
—Load or
accumulate
on each
coek L1 &vele
Load__l F‘I
% [% | % [% | % | % |
out Xo | Xota [Xotxetto| Xg | XXy [XgtRetxs)
2/28/2015 18

Random-Access Memory

valA

A
cA
= valw

Register

Read ports file

ossw Write port

Clolck

— Stores multiple words of memory

» Address input specifies which word to read or write
— Register file

« Holds values of program registers

%eax, $esp, etc.
» Register identifier serves as address
— ID 8 implies no read or write performed

— Multiple Ports

« Can read and/or write multiple words in one cycle

2/28/2015 — Each has separate address and data input/output 19

CSC 252 - Spring 2015

Register File Timing

* Reading

— Like combinational logic
— Output data generated based on
input address
« After some delay
* Writing
— Like register
— Update only as clock rises

Register ,, [~ Rising et aw
: s R,
file =™ 2 |:> clock |:> egister [

j file

Clock I
2/28/2015 Clock 20

Register
file

2/28/2015

Computer Organization

Building Blocks

» Combinational Logic
— Compute Boolean functions of A
inputs
— Continuously respond to input
changes

— Operate on data and implement
control

fun

« Storage Elements |
— Store bits sen
— Addressable memories
— Non-addressable registers o | ®

Register
file

valw
W ks

}— Clock

— Loaded only as clock rises

2/28/2015

Clock

SEQ Hardware :VC -
Structure

. State Memory

— Program counter register (PC)
— Condition code register (CC)
— Register File
— Memories

* Access same memory space

« Data: for reading/writing program
data

« Instruction: for reading instructions
» Instruction Flow
— Read instruction at address
specified by PC
— Process through stages
— Update program counter

Execute

Decode

icode ifun
e

Fetch

2/28/2015

PC

Write back

SEQ Stages

« Fetch Memory

— Read instruction from instruction
memory

+ Decode

— Read program registers
« Execute

— Compute value or address
* Memory

— Read or write data
+ Write Back

— Write program registers feodeifun

i

+ PC

— Update program counter Fetch

Execute

Decode

2/28/2015

newpC

Addr, Data

alua, aluB

valA, valB

SICA, S1CB
T)
st dstB e
fiie |

CSC 252 - Spring 2015

Instruction Decoding
Optional Optional

I_A_Y—/%

IS‘OIrA‘rBI D]

icode
ifun
rA

rB
valC

* Instruction Format
— Instruction byte icode:ifun
— Optional register byte rA:rB
— Optional constant word valC

2/28/2015 24

2/28/2015

Computer Organization

Executing Arith./Logical Operation

[ln[A[7]
*Fetch *Memory
—Read 2 bytes — Do nothing
*Decode *Write back
— Read operand — Update register
registers PC Update
*Execute — Increment PC by 2

— Perform operation
— Set condition codes

2/28/2015 25

Possible Implementation Strategies

 Single-cycle control

* Multi-cycle control

 Pipelined (in-order execution)

» Superscalar and out-of-order execution

2/28/2015 2%

Single-Cycle Control

« Cannot use any hardware unit twice in one cycle

— Multiple datapath elements (e.g., ALU and PC
incrementer) if needed for multiple purposes

— Multiple reads or writes to memory or register
file require multiporting

* Clock cycle must accommodate instruction with
the longest latency

2/28/2015 27

CSC 252 - Spring 2015

Multi-cycle Control

+ Split single instruction into multiple pieces

+ Execute individual pieces using hardwired finite
state machine (FSM) or microprogramming

+ Can finish simple instructions in fewer cycles
+ Can run clock faster
« Still execute a single instruction at a time

2/28/2015 28

2/28/2015

Computer Organization

Pipelined Datapath
» Multiple instructions overlapped in execution

» Improve throughput, not individual instruction execution
time

» Exploit parallelism among instructions in a sequential
stream

» Balance length of each stage. Ideally -

— Time between instrs jieiines = TiMe between instrs o, pipeiines /NUMber of pipe stages

2/28/2015 29

Computational Example

300 ps 20 ps
—_— Combinational —p Delay = 320 ps
logic Throughput = 3.12 GOPS
Clock

* System
— Computation requires total of 300 picoseconds
— Additional 20 picoseconds to save result in register
— Must have clock cycle of at least 320 ps

2/28/2015 30

3-Way Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. Comb. Comb. _
= logic [logic [logic [Delay = 360 ps
Throughput = 8.33 GOP
A B (03
\
Clock
* System

— Divide combinational logic into 3 blocks of 100 ps each
— Can begin new operation as soon as previous one passes
through stage A.
« Begin new operation every 120 ps
— Overall latency increases
« 360 ps from start to finish

2/28/2015 31

Pipeline Diagrams

* Unpipelined
oP1
oP2
op3 Time e

— Cannot start new operation until previous one completes
* 3-Way Pipelined

oAl B
oP2 A| B | C
oP3 Al B] c]

Time
— Up to 3 operations in process simultaneously

2/28/2015 32

CSC 252 - Spring 2015

2/28/2015

Computer Organization

Operating a Pipeline

2241 300 359

Clock
OP1
oP2 A B Cc
OoP3 A B (¢
} } } } } {
0 120 240 360 480 640

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

2/28/2015 33

Limitations: Nonuniform Delays

50ps 20ps 150 ps 20 ps 100 ps 20 ps
omb| Comb. Comb.
—p| logic logic | logic = Delay = 510 ps
A B c Throughput = 5.88 GOPS

or1 [A] B | C | Clock

oP2 A B c |

oP3 Al B c | |
Time

—Throughput limited by slowest stage
—Other stages sit idle for much of the time

—Challenging to partition system into balanced
2/28/2015$tageS 34

Limitations: Register Overhead

50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps

Comb| Comb. Comb, Comb, IComb,| IComb |
logic logic logic logic logic logic
F

Clock Delay = 420 ps, Throughput = 14.29 GOPS

— As we try to deepen pipeline, overhead of loading registers
becomes more significant
— Percentage of clock cycle spent loading register:
+ 1-stage pipeline: 6.25%
« 3-stage pipeline: 16.67%
« 6-stage pipeline: 28.57%
— High speeds of modern processor designs obtained through very

deep pipelining

2/28/2015 35

Hazards

 Structural (e.g., instruction/data fetch)
+ Control (e.g., jeq)

» Data (e.g., add followed by sub reading dst
register of add)

2/28/2015 36

CSC 252 - Spring 2015

2/28/2015

Computer Organization

Data Dependencies

_]

—_— Combinational |
logic
Clock

OP1 b

oP2 <

OP3

Time
e System

—Each operation depends on result from
282 receding one

37

Data Hazards

Comb. Comb. R Comb.
= logic [*|e[™ logic [>le[™> logic "
A B g (03

\
Clock

o [A]BCKN

oP2 Al B [/c

oP3 B | C

oP4 N al[s]c]
Time

—Result does not feed back around in time for
next operation

seoripelining has changed behavior of system s

Data Dependencies in Processors

1 irmovl $50,
2 addl ,
), %edx

3 mrmovl 100 (

— Result from one instruction used as operand for
another
» Read-after-write (RAW) dependency
—Very common in actual programs
— Must make sure our pipeline handles these properly
* Get correct results
* Minimize performance impact

2/28/2015 39

CSC 252 - Spring 2015

Pipeline Summary

Data Hazards

— Most handled by forwarding
< No performance penalty

— Load/use hazard requires one cycle stall

Control Hazards

— Cancel instructions when detect mispredicted branch
« Two clock cycles wasted

— Stall fetch stage while ret passes through pipeline
« Three clock cycles wasted

Control Combinations

— Must analyze carefully

— Watch for subtle bugs that only arises with unusual instruction
combination

2/28/2015 40

2/28/2015

10

Computer Organization

Modern CPU Design

Instruction Control

....................... Address
— struction
File

{ Operations

Register]| Prediction
Updates OK?

Y

Operation Results

Addr | Addr|
Data Data

Execution

2/28/2015

41

Instruction-level Parallelism

* Pipelining/super-pipelining

« Out-of-order execution

* Super-scalar
— multiple instructions per pipeline stage
— Dependences handled in hardware

* Very Large Instruction Word (VLIW)
— Multiple instructions per pipeline stage
— Dependences taken care of by compiler

2/28/2015

42

Register Prediction
’

Operations
Updates ! OK?

Execution

Operation Results

Execution

Addr} Add
Data Dat

— Multiple functional units
« Each can operate independently

— Operations performed as soon as operands available
* Not necessarily in program order
+ Within limits of functional units

— Control logic

2/28/2015

« Ensures behavior equivalent to sequential program execution

CSC 252 - Spring 2015

Data Hazards: Forwarding

* The CDC 6600 Score-board architecture

* Tomasulo’s generalized forwarding algorithm in
the IBM360

— Used reservation stations and shared buses

2/28/2015

44

2/28/2015

11

Computer Organization

Advanced Processor Design
Techniques

» Trace caches
» Register renaming — eliminate WAW, WAR hazards
— Register map table
— Free list
— Active list
» Speculative execution
* Value prediction
» Branch prediction
— Branch history tables for prediction
— Branch stack to save state prior to branch

— Branch mask to determine instructions that must be
squashed

2/28/2015 45

Processor Summary

» Design Technique
— Create uniform framework for all instructions
« Wantto share hardware among instructions
— Connect standard logic blocks with bits of control logic
* Operation
— State held in memories and clocked registers
— Computation done by combinational logic

— Clocking of registers/memories sufficient to control overall
behavior

Enhancing Performance

— Pipelining increases throughput and improves resource
utilization

— Must make sure maintains ISA behavior
2/28/2015 46

Disclaimer

* Parts of the slides were developed by and
borrowed from slides the following textbook
authors: Dave O'Hallaron and Randy Bryant,
and Randy Katz. The slides are intended for
the sole purpose of instruction of computer
organization at the University of Rochester.
All copyrighted materials belong o their
original owner(s).

2/28/2015 47

CSC 252 - Spring 2015

2/28/2015

12

