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Instruction Set Architecture
• Assembly Language View

– Processor state

• Registers, memory, …

– Instructions

• addl, movl, leal, …

• How instructions are encoded as 

bytes

• Layer of Abstraction

– Above: how to program machine

• Processor executes instructions in 

a sequence

– Below: what needs to be built

• Use variety of tricks to make it run 

fast

• E.g., execute multiple instructions 

simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program
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Basic Issues in Instruction Set Design

Goal: find a language that makes it easy to build 

both the hardware and the compiler while 

maximizing performance and minimizing cost

• What operations (and how many) should be 

provided

• How (and how many) operands are specified

• What data types and sizes

• How to encode these into consistent instruction 

formats
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Overview of Logic Design

• Fundamental Hardware Requirements

– Communication

• How to get values from one place to another

– Computation

– Storage

• Bits are Our Friends

– Everything expressed in terms of values 0 and 1

– Communication

• Low or high voltage on wire

– Computation

• Compute Boolean functions

– Storage

• Store bits of information
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Computing with Logic Gates

–Outputs are Boolean functions of inputs

–Respond continuously to changes in inputs

• With some, small delay

a

b
out

a

b
out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay

Transistor

basic electrical switch

three terminal switch:  gate, source, drain

voltage between gate and source exceeds threshold 
switch is conducting or "closed" 
electrons flow between source  and drain

when voltage is removed, 
the switch is "open" or non-conducting
connection between source and drain is broken

voltage-controlled switch

MOS Technology

Gate 

Drain Source 

Physical Implementation

Circuit that implements logical negation (NOT)

1 at input yields 0 at output
0 at input yields 1 at output

Inverter behavior as a function of input voltage
input ramps from 0V to Vdd
output holds at Vdd for some range of small 

input voltages
then changes rapidly, but not instantaneously! 

V Out 

+5 

0 +5 V In  

Logic 0 Input  
V oltage 

Logic 1 Input 
V oltage 

Building upon transistor switches, we can construct logic gates that

implement various logic operations such as AND, OR, and NOT

Logic gates -- physical devices that operate over electrical voltages rather

than symbols like 1 and 0.

Typical logic gate interprets voltages near Vdd as a logic 1 and those near 0V

as a logic 0.

Inverter
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PMOS

NMOS
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Digital Design Representation
1.  Switches

A switch connects two points (small circles) under control 
signal (arrow w/ line through it).

when the control signal is 0 (false), the switch is open

when it is 1 (true), the switch is closed

when control is 1 (true), switch is open

when control is 0 (false), switch is closed

Normally Closed

Normally Open

Open  
Switch 

Control 

Normally Open 
Switch 

Closed 
Switch 

T rue 

False 

Open  
Switch 

Control 

Normally Closed 
Switch 

Closed 
Switch 

T rue 

False 

A 

False 

T rue 

output 

B A 

False 

T rue 

output 

B 

AND function

Series connection to TRUE

OR function

Parallel connection to TRUE

Series connection of Normally open -- AND

Parallel connection of Normally open -- OR

Implementation of AND and OR 

Functions with Switches
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Combinational Circuits

• Acyclic Network of Logic Gates

– Continously responds to changes on primary inputs

– Primary outputs become (after some delay) 

Boolean functions of primary inputs

Acyclic Network

Primary
Inputs

Primary
Outputs
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OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

Arithmetic Logic Unit

–Combinational logic

• Continuously responding to inputs

–Control signal selects function computed

• Corresponding to 4 arithmetic/logical operations in 

Y86

–Also computes values for condition codes

A

L

U

Y

X

X + Y

0

A

L

U

Y

X

X - Y

1

A

L

U

Y

X

X & Y

2

A

L

U

Y

X

X ^ Y

3

A

B

A

B

A

B

A

B
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Sequential Logic: Memory and Control

• Sequential:

– Output depends on the current input 

values and the previous sequence of input 

values.

– Are Cyclic:

• Output of a gate feeds its input at some future 

time.

– Memory:

• Remember results of previous operations

• Use them as inputs.

– Example of use:

• Build registers and memory units.
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Clocks

• Signal used to synchronize activity in a 

processor

• Every operation must be completed in the time 

between two clock pulses (or rising edges) ---

the cycle time

• Maximum clock rate (frequency) determined by 

the slowest logic path in the circuit (the critical 

path)

Clock
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Edge-Triggered Latch

– Only in latching mode for 

brief period

• Rising clock edge

– Value latched depends on 

data as clock rises

– Output remains stable at 

all other times

Q+

Q–

R

S

D

C

Data

Clock
T
Trigger

C

D

Q+

Time

T
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Registers

– Stores word of data

• Different from program registers seen in assembly code

– Collection of edge-triggered latches

– Loads input on rising edge of clock

I O

Clock

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

D

C
Q+

i7

i6

i5

i4

i3

i2

i1

i0

o7

o6

o5

o4

o3

o2

o1

o0

Clock

Structure
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Register Operation

–Stores data bits

–For most of time acts as barrier between input 

and output

–As clock rises, loads input

State = x

Rising

clock


Output = xInput = y

x


State = y

Output = y

y
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State Machine Example

–Accumulator 

circuit

–Load or 

accumulate 

on each 

cycle

Comb. Logic

A

L

U

0

Out

MUX

0

1

Clock

In

Load

x0 x1 x2 x3 x4 x5

x0 x0+x1 x0+x1+x2 x3 x3+x4 x3+x4+x5

Clock

Load

In

Out
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Random-Access Memory

– Stores multiple words of memory

• Address input specifies which word to read or write

– Register file

• Holds values of program registers

• %eax, %esp, etc.

• Register identifier serves as address

– ID 8 implies no read or write performed

– Multiple Ports

• Can read and/or write multiple words in one cycle

– Each has separate address and data input/output

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Read ports Write port

Clock
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Register File Timing
• Reading

– Like combinational logic

– Output data generated based on 

input address

• After some delay

• Writing

– Like register

– Update only as clock rises

Register

file

A

B

srcA

valA

srcB

valB

y

2
Register

file
W

dstW

valW

Clock

x2

Rising

clock
 

Register

file
W

dstW

valW

Clock

y2

x2

x

2
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Building Blocks

• Combinational Logic

– Compute Boolean functions of 

inputs

– Continuously respond to input 

changes

– Operate on data and implement 

control

• Storage Elements

– Store bits

– Addressable memories

– Non-addressable registers

– Loaded only as clock rises

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Clock

A

L

U

fun

A

B

MUX

0

1

=

Clock
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SEQ Hardware 

Structure
• State

– Program counter register (PC)

– Condition code register (CC)

– Register File

– Memories

• Access same memory space

• Data: for reading/writing program 

data

• Instruction: for reading instructions

• Instruction Flow

– Read instruction at address 

specified by PC

– Process through stages

– Update program counter

Instruction

memory

Instruction
memory

PC

increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Bch

valE

Addr, Data

valM

PC
valE, valM

newPC
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SEQ Stages

• Fetch

– Read instruction from instruction 

memory

• Decode

– Read program registers

• Execute

– Compute value or address

• Memory

– Read or write data

• Write Back

– Write program registers

• PC

– Update program counter
Instruction

memory

Instruction

memory
PC

increment

PC

increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun

rA , rB
valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Bch

valE

Addr, Data

valM

PC
valE, valM

newPC
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Instruction Decoding

• Instruction Format

– Instruction byte icode:ifun

– Optional register byte rA:rB

– Optional constant word valC

5 0 rA rB D

icode

ifun

rA

rB

valC

Optional Optional
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Executing Arith./Logical Operation

•Fetch

– Read 2 bytes

•Decode

– Read operand 

registers

•Execute

– Perform operation

– Set condition codes

•Memory

– Do nothing

•Write back

– Update register

•PC Update

– Increment PC by 2

OPl rA, rB 6 fn rA rB
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Possible Implementation Strategies

• Single-cycle control

• Multi-cycle control

• Pipelined (in-order execution)

• Superscalar and out-of-order execution
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Single-Cycle Control

• Cannot use any hardware unit twice in one cycle

– Multiple datapath elements (e.g., ALU and PC 

incrementer) if needed for multiple purposes

– Multiple reads or writes to memory or register 

file require multiporting

• Clock cycle must accommodate instruction with 

the longest latency

2/28/2015 28

Multi-cycle Control

• Split single instruction into multiple pieces

• Execute individual pieces using hardwired finite 

state machine (FSM) or microprogramming

• Can finish simple instructions in fewer cycles

• Can run clock faster

• Still execute a single instruction at a time
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Pipelined Datapath

• Multiple instructions overlapped in execution

• Improve throughput, not individual instruction execution 

time

• Exploit parallelism among instructions in a sequential 

stream

• Balance length of each stage. Ideally -
– Time between instrs pipelined = Time between instrs non-pipelined /Number of pipe stages
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Computational Example

• System

– Computation requires total of 300 picoseconds

– Additional 20 picoseconds to save result in register

– Must have clock cycle of at least 320 ps

Combinational

logic

R

e

g

300 ps 20 ps

Clock

Delay = 320 ps

Throughput = 3.12 GOPS
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3-Way Pipelined Version

• System

– Divide combinational logic into 3 blocks of 100 ps each

– Can begin new operation as soon as previous one passes 

through stage A.

• Begin new operation every 120 ps

– Overall latency increases

• 360 ps from start to finish

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Delay = 360 ps

Throughput = 8.33 GOPS
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Pipeline Diagrams

• Unpipelined

– Cannot start new operation until previous one completes

• 3-Way Pipelined

– Up to 3 operations in process simultaneously

Time

OP1

OP2

OP3

Time

A B C

A B C

A B C

OP1

OP2

OP3
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Operating a Pipeline

Time

OP1

OP2

OP3

A B C

A B C

A B C

0 120 240 360 480 640

Clock

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

R

e

g

R

e

g

R

e

g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.

logic

A

Comb.

logic

B

Comb.

logic

C

Clock

300

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359
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Limitations: Nonuniform Delays

–Throughput limited by slowest stage

–Other stages sit idle for much of the time

–Challenging to partition system into balanced 

stages

R

e

g

Clock

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Delay = 510 ps

Throughput = 5.88 GOPS

Comb.

logic

A

Time

OP1

OP2

OP3

A B C

A B C

A B C
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Limitations: Register Overhead

– As we try to deepen pipeline, overhead of loading registers 

becomes more significant

– Percentage of clock cycle spent loading register:

• 1-stage pipeline: 6.25% 

• 3-stage pipeline: 16.67% 

• 6-stage pipeline: 28.57%

– High speeds of modern processor designs obtained through very 

deep pipelining

Delay = 420 ps, Throughput = 14.29 GOPSClock

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps

R

e

g

Comb.

logic

50 ps 20 ps
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Hazards

• Structural (e.g., instruction/data fetch)

• Control (e.g., jeq)

• Data (e.g., add followed by sub reading dst 

register of add)
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Data Dependencies

• System

–Each operation depends on result from 

preceding one

Clock

Combinational

logic

R

e

g

Time

OP1

OP2

OP3
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Data Hazards

–Result does not feed back around in time for 

next operation

–Pipelining has changed behavior of system

R

e

g

Clock

Comb.

logic

A

R

e

g

Comb.

logic

B

R

e

g

Comb.

logic

C

Time

OP1

OP2

OP3

A B C

A B C

A B C

OP4 A B C
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Data Dependencies in Processors

– Result from one instruction used as operand for 

another

• Read-after-write (RAW) dependency

– Very common in actual programs

– Must make sure our pipeline handles these properly

• Get correct results

• Minimize performance impact

1 irmovl $50, %eax

2 addl %eax ,  %ebx

3 mrmovl 100( %ebx ),  %edx
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Pipeline Summary
• Data Hazards

– Most handled by forwarding

• No performance penalty

– Load/use hazard requires one cycle stall

• Control Hazards

– Cancel instructions when detect mispredicted branch

• Two clock cycles wasted

– Stall fetch stage while ret passes through pipeline

• Three clock cycles wasted

• Control Combinations

– Must analyze carefully

– Watch for subtle bugs that only arises with unusual instruction 

combination
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Modern CPU Design

ExecutionExecution

Functional

Units

Instruction ControlInstruction Control

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Instruction

Cache

Data

Cache

Fetch

Control

Instruction

Decode

Address

Instructions

Operations

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Retirement

Unit

Register

File

Register

Updates
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Instruction-level Parallelism

• Pipelining/super-pipelining

• Out-of-order execution

• Super-scalar 

– multiple instructions per pipeline stage

– Dependences handled in hardware

• Very Large Instruction Word (VLIW)

– Multiple instructions per pipeline stage

– Dependences taken care of by compiler
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Execution

Unit

– Multiple functional units

• Each can operate independently

– Operations performed as soon as operands available

• Not necessarily in program order

• Within limits of functional units

– Control logic

• Ensures behavior equivalent to sequential program execution

ExecutionExecution

Functional

Units

Integer/

Branch

FP

Add

FP

Mult/Div
Load Store

Data

Cache

Prediction

OK?

DataData

Addr. Addr.

General

Integer

Operation Results

Register

Updates
Operations

2/28/2015 44

Data Hazards: Forwarding

• The CDC 6600 Score-board architecture

• Tomasulo’s generalized forwarding algorithm in 

the IBM360

– Used reservation stations and shared buses
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Advanced Processor Design 

Techniques

• Trace caches

• Register renaming – eliminate WAW, WAR hazards

– Register map table

– Free list

– Active list

• Speculative execution

• Value prediction

• Branch prediction

– Branch history tables for prediction

– Branch stack to save state prior to branch

– Branch mask to determine instructions that must be 
squashed
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Processor Summary

• Design Technique

– Create uniform framework for all instructions

• Want to share hardware among instructions

– Connect standard logic blocks with bits of control logic

• Operation

– State held in memories and clocked registers

– Computation done by combinational logic

– Clocking of registers/memories sufficient to control overall 

behavior

• Enhancing Performance

– Pipelining increases throughput and improves resource 

utilization

– Must make sure maintains ISA behavior
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Disclaimer

• Parts of the slides were developed by and 
borrowed from slides the following textbook 
authors: Dave O’Hallaron and Randy Bryant, 
and Randy Katz. The slides are intended for 
the sole purpose of instruction of computer 
organization at the University of Rochester. 
All copyrighted materials belong to their 
original owner(s). 


