Computer Organization

Computer Organization
* — Overview

Kai Shen

1/122/2015

Introduction to Computer Systems

= Abstraction and theory are critically important:
= Abstract data types, asymptotic analysis

= They don’t address many practical problems:
= In the presence of bugs
= Different systems components interact in complex ways
= Performance is affected by subtle implementation details

= Malicious parties exploit vulnerabilities that do not follow
conventional system abstraction and design

= The study of computer systems confronts reality:

= Real implementation, real hardware artifacts, real security
vulnerability, real performance anomalies, ...

Reality #1:
int vs. integer, £float vs. real

= Example 1:1s x2 2 0?

= 40000 * 40000 = 1600000000
= 50000 * 50000 = 22
s Example2:ls(x +y) +z = x + (y + 2)?
= Unsigned & Signed int’s: Yes!

= Float’'s:
« (le20 + -1e20) + 3.14 = 3.14
= 1le20 + (-1e20 + 3.14) = ??

CSC252 - Spring 2015

Security Vulnerability

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel (void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528 L
= Real example: similar to

void getstuff() { code found in FreeBSD’s
char mybuf [MSIZE]; . | tati £
copy_from_kernel (mybuf, MSIZE); Implementation o
printf (“%s\n”, mybuf); getpeername

Computer Organization

1/122/2015

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel (void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

define MSIZE 528)
Ll = -MSIZE, when interpreted

asunsigned int by
memcpy, becomes a very
large integer

void getstuff() {
char mybuf [MSIZE];
copy_from_ kernel (mybuf, -MSIZE);

Reality #2:
You’'ve Got to Know Assembly

Chances are, you'll never write programs in assembly
= Compilers are much better & more patient than you are

But: understanding assembly is useful and important
= Implementing system software
= Compiler has machine code as target
= Operating systems do weird things (save/restore process state)
» Access special hardware features
= Processor model-specific registers
= Tuning program performance
= Understand optimizations done / not done by the compiler
= Understand sources of program inefficiency
= Creating / fighting malware
= x86 assembly is the language of choice!

Example: Read Timestamp Counter

Timestamp Cycle Counter (useful for fine-grained time tracking)
= Special 64-bit register on many processors
= Incremented every clock cycle
= Read with rdtsc instruction

Write small amount of assembly code using GCC’s asm facility

0;
0;

static unsigned cyc_hi
static unsigned cyc_lo

/* Set *hi and *lo to the high and low order bits
of the cycle counter.
*/
void access_counter (unsigned *hi, unsigned *1lo)
{
asm("rdtsc; movl %$%edx,%0; movl %%eax,%1"
. "=r" (*hi), "=r" (*lo)

: "Sedx", "%eax");

Reality #3: Memory Matters

Random Access Memory is a deceiving abstraction

Memory is not unbounded
= It must be allocated and managed

= Memory referencing bugs are hard to track down (silently propagate
and corrupt before manifesting symptoms appear)

Memory performance is not uniform

= Cache and virtual memory effects can greatly affect program
performance

= Adapting program to characteristics of memory system can lead to
major speed improvements

CSC252 - Spring 2015

Computer Organization

Memory Referencing Bug Example

double fun (int i)
{
volatile double d[1l] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];
}

fun(0) returns 3.14

fun(l) returns 3.14

fun(2) returns 3.1399998664856

fun(3) returns 2.00000061035156

fun(4) returns 3.14, then segmentation fault

Explanation: [saved state
d[0] upper 32-bit
d[0] lower 32-bit
a[1]

al0]

Location accessed by
fun (i)

o B N W A

1/122/2015

Memory Referencing Errors

= Cand C++ do not provide any memory protection
= Out of bounds array references
= Invalid pointer values
= Abuses of malloc/free
= Can lead to nasty bugs
= Whether bug has any effect depends on system/compiler
= Consequence at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

= How can | deal with this?
= Understand and debug!
= Use tools to detect referencing errors (e.g. Valgrind)

= Program in language with stronger memory protection (Java)
10

Memory System Performance Example

{

void copyij(int src[2048][2048], void copyji(int src[2048] [2048],
int dst[2048] [2048]) int dst[2048] [2048])
{
int i,j; int i,3j;
for (i = 0; i < 2048; i++) Lrfor (j = 0; j < 2048; j++)
for (j = 0; j < 2048; j++) >‘\ for (i = 0; i < 2048; i++)
dst[i] [j] = src[i][3]; dst[i] [J] = src[i][]];
}

21 times slower
(Pentium 4)

= Hierarchical memory organization

Performance depends on access patterns

A[0][0]

In this case, how step through multi-dimensional array

A[0][2047] A[1][0] A[1][2047]

11

CSC252 - Spring 2015

Reality #4: More to performance than
asymptotic complexity

Constant factors matter too!

And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code is written

= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

Must understand system to optimize performance
= How programs compiled and executed
= How to measure program performance and identify bottlenecks

= How to improve performance without destroying code modularity and
generality

12

Computer Organization

1/122/2015

Example Matrix Multiplication

matrix sze

Both implementations have exactly the same operations count (2n3)

rix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

Gflop/s
S000¢
¥7s00 Best code (K. Goto)
12500
Triple loop
':” o _zzsu u:u ﬂ:su l.ﬁ

13

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflopl/s
50000
37500
Multiple threads: 4x

25000
12600

'} Vector instructions: 4x

@ ol Memory hierarchy and other optimizations: 20x
L] Z250 4,500 6.750 8,000

mairie size

14

execute programs

= They need to get data in and out
= Computing is increasingly driven by data

issues
= Concurrent operations by autonomous processes
= Coping with unreliable communication media
= Cross platform compatibility
= Complex performance issues

run tens of millions of instructions (even on a smartphone)

Reality #5: Computers do more than

= They communicate with each other over networks with new system

= An /O operation takes milliseconds to complete — enough time to

15

Course Goals

= Acquire a broad understanding of computer systems, its
components, and how they work together.

= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance

m Prepare for later “systems” courses

= Compilers, Operating Systems, Networks, Computer Architecture,
Parallel and Distributed Systems

16

CSC252 - Spring 2015

Computer Organization

Course Perspective

= Later Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor
= Operating Systems
= Implement large portions of operating system
= Compilers
= Write compiler for high-level language
= Networking

= Implement and simulate network protocols

17

1/122/2015

Course Perspective (Cont.)

= This Course is Programmer-Centric

= By knowing more about the underlying system, one can be
more effective as a programmer
= Enable you to
= Write programs that are more reliable and efficient

= Incorporate features that require hooks into OS (e.g.,
concurrency, signal handlers)

18

General Course Information

= Course Web page
s http://www.cs.rochester.edu/courses/252/spring2015/

= Textbook

= “Computer Systems: A Programmer’s Perspective”, by Bryant and
O’Hallaron, Second Edition, 2011.

m Instructor and TAs

19

CSC252 - Spring 2015

Course Components

= Lectures
= Higher level concepts
= Presence in lectures: voluntary, recommended
= | encourage participation in class discussion
= Lab assignments (5)
= The heart of the course
= About 2 weeks each
= Provide in-depth understanding of an aspect of systems
= Programming and measurement
= Exams (midterm + final)
= Test your understanding of concepts & mathematical principles

20

Computer Organization

Lab assignments

= Substantial C programming
= Late submissions (not accepted or with substantial penalty)
= Groups

= Accounts in computer science labs
= If you don’t have one, sign up on a sheet AND see Marty

21

1/122/2015

Academic Honesty

» What is cheating?

Sharing code: by copying, retyping, looking at, or supplying a file

Coaching: helping your friend to write a lab

Copying code from previous course or from elsewhere on WWW
= Only allowed to use code we supply

m What is NOT cheating (in fact, encouraged)?

Explaining how to use general systems, libraries, or tools for
programming and/or debugging

Learning through online sources with respect to general, high-level
knowledge that is not specific to your lab assignments

Helping each other on the understanding of such materials

22

Disclaimer

m These slides were adapted from the CMU course slides
provided along with the textbook of “Computer Systems:
A programmer’s Perspective” by Bryant and O’Hallaron.
The slides are intended for the sole purpose of teaching
the computer organization course at the University of
Rochester.

23

CSC252 - Spring 2015

