Computer Organization 2/17/2015

An Example Memory Hierarchy

c h H d P f CPU registers hold words retrieved
ac Ing an er ormance from L1 cache
L1 cache
Smaller, (SRAM) L1 cache holds cache lines retrieved
! from L2 cache
| faster,
costlier L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
. Main memory
Kal Shen Llarger, (DRAM) Main memory holds disk blocks
s:wer’ retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
5: Remote secondary storage
y (tapes, distributed file systems, Web servers)

Caches (broader interpretation) i What Data to Keep in Caches?

= Cache: A smaller, faster storage device that acts as a staging area for

= To achieve the goal that most accesses are satisfied by cache, what
a subset of the data in a larger, slower device.

data to keep in cache?
= Fundamental idea of a memory hierarchy:

= For each k, the faster, smaller device at level k serves as a cache for the
larger, slower device at level k+1.

= For temporal locality

= Keep data that is recently accessed
= For spatial locality
= Why do memory hierarchies work?

= Because of locality, most accesses are satisfied by cache.

= So you get the storage space of lower-level storage but enjoy the speed
of higher level cache.

= Keep data that is adjacent (next) to currently accessed data

CSC252 - Spring 2015

Computer Organization

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cach
ache [[o JCmdl]| o
Lol sl 2] 3]
La s Jl s 71
(8 J[o J[10] 11|
| 2][3 [14 [15 |
900 00000O0OCGOIOSNOGOINOGNOINONOGNDS

2/17/2015

General Cache Concepts: Miss

Request: 12 Data in block b is needed
Cache | 3 “ = ” T ” 3 | ﬁ/llzcslj b is not in cache:
] Block b is fetched from
Request: 12 lower-level
Lo JL 2 J[2 [3] Block b is stored in cache
| 4 || 5 || 6 || 7 | * Replacement policy:
] o v |
| 22 J[3 [14 |[15 |
90 00000O0OCGCOIONONOINOSNOGNONOSIOS

Caches (narrower interpretation)

s Cache memories are small, fast SRAM-based memories managed
automatically in hardware.
= Hold frequently accessed blocks of main memory
= CPU looks first for data in caches (e.g., L1, L2, and L3), then in main
memory.
= Typical system structure:

Register file

CPU chip

Cache
memories
: Vo || Main
‘ Bus interface ‘ memory

System bus Memory bus

CSC252 - Spring 2015

Cache Set Association

E = 2¢ lines per set

(~ " t

[| Jaee |
| | Jeoes| !
S =25 sets < [| Jeooef |
U | Joses| |

= A cache line is a basic unit of access to memory (e.g., 64 bytes)

= Each setis mapped to a certain section of the memory space
(according to particular s bits in a segment of the memory address)

= E-way associative (flexibility of replacement)

Computer Organization 2/17/2015

Cache Read » Locate set Cache Set Association

* Check if any line in set
has matching tag

E = 2¢ lines per set

E = 2¢ lines per set * Yes + line valid: hit N
-~ A ~ * Locate data starting - ™
r set
r at offset | ” |'°'°I |
I I Jooe] |
Address of word:
| I [ooee] | [thits_ [sbits [bbits | l | Joeee] |
- S~~~ S =25 sets <
§=2°sets 4 | I{ [oo0ef | tag set line l I Joeee] |
index offset 0000 ccccccccccccccccccccccoe
00 0000000000000 00000000000
\ | || |....| | \ | || |....| |
= Each set is mapped to a certain section of the memory space
= E-way associative
[e] [o]z]2] [e1] = Special cases
valid bit | < > = Direct-mapped: One line per set.
B = 25 bytes per cache line (the data) 9 = Fully-associative: One set for the whole cache. 10

Cache Helps Programs with Locality $ What about writes?

= Cache improves the performance of programs with temporal locality

= Replacement policy prefers to retain more recently accessed data
(limited in direct-mapped cache)

m Write-through
= write immediately to memory

= Write-back
= Cache improves the performance of programs with spatial locality = write to cache only (most of time)
= Cacheline-grained memory access (implicit prefetching) = defer write to memory until replacement of line
= Explicit prefetching
11 12

CSC252 - Spring 2015 3

Computer Organization 2/17/2015

Intel Core i7 Cache Hierarchy Cache Performance

ProceSsor package

= Huge difference between a hit and a miss

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

L3 unified cache

(shared by all cores) Cache line size: 64 bytes

for all caches.

i Core 0 Core 3 i Lli-cache and d-cache:

i : 32 KB, 8-way, = Could be 100x, if just L1 and main memory
: Access: 4 cycles

3 : = Would you believe 99% hits (fraction of memory accesses in cache)
1 L1) L1 L1 ; L1 P unified cache: is twice as good as 97%?

1| d-cache |i-cache d-cache |i-cache| | ! 256 KB, 8-way, i

: ‘ ‘ e | |] Access: 11 cycles - ConSIde.r.)

} L2 unified 12 unified : cache hit time of 1 cycle

cache cache ! L3 unified cache: miss penalty of 100 cycles

i T T ' 8 MB, 16-way,

i | | : Access: 30-40 cycles = Average access time:

= “Miss rate” is more illustrative than “hit rate”

’ Main memory ‘

13 14
. Intel Core i7 . Intel Core i7
The Memory Mountain 32KBL1 i-cache The Memory Mountain 32KBL1 i-cache
32 KB L1 d-cache 32 KB L1 d-cache
256 KB unified L2 cache] 256 KB unified L2 cache
& 8M unified L3 cache & 8M unified L3 cache
o o0
= All caches on-chip = All caches on-chip
5 5
Qo Qo
< <
o o
3 =]
2 [
£ £
T T
© ©
(] Q
4 o
Slopes o
spatial 1
locality
. L >
St"d? (x8 byte:s) o < % s © Working set size (bytes) orking set size (bytes)
Spatial locality 3 Temporal locality s 6

CSC252 - Spring 2015 4

Computer Organization 2/17/2015

Intel Core i7
The Memory Mountain 32KBL1 i-cache Writing Cache Friendly Code
32 KB L1 d-cache
256 KB unified L2 cache
—_) 8M unified L3 cache
2 7000 T - = Make the common case go fast
% All caches on-chip = Focus on the (inner) loops of the core functions
3
Qo
'§> = Minimize the misses in the inner loops
_\:‘3 = Repeated references to variables are good (temporal locality)
3 Ridges of = Sequential reference patterns are good (spatial locality)
S Temporal
j locality m Case studies
Slopes of200 ; . . .
spatial 1065 - 7 = Rearrange loops to improve spatial locality
locality = > = Use blocking to improve temporal locality
N~
- 2w
Stride (x8 bytes) L Ns B Working set size (bytes)
» <
© 17 18
Matrix Multiplication Performance Layout of C Arrays in Memory (review)
= = Variable sum . . s For Carrays, each inner vector in contiguous memory locations
7 1jk ¥/ . . = Multiply n x n matrices . . .
i (i) held in register = Stepping through elements in one inner vector:
o o i L = O(n3) total operations for (i = 0: i < n; i++)
for (J=0; j<n; j++) { ; - >
S = OGE = 3n3 data accesses sum += a[0][i];
for (k=0; k<n; k++) = Cache misses dominate the = accesses successive elements
sum += a[i][k] * b[K1[i]; performance = recall that we load a cacheline at a time
c[i1[i] = sum; = Some data accesses go to = if cache line size (64) > 8 bytes, exploit spatial locality
3} registers = missrate=8/64
3 = Some memory accesses = Stepping through the outer index:
hit in cache = for (i =05 i < n; i++)
—k—> j—’ J—' sum += a[i][0];
= accesses distant elements
\ i I k \ [= no spatial locality!

= miss rate = 1.0 (i.e. 100%)

19

20

CSC252 - Spring 2015 5

Computer Organization

Matrix Multiplication (ijk)

U UI_(7 B B Inner loop:
for (i=0; i<n; i++) {
for (J=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

. .)
i L u
sum += a[i][K] * bIKILi1: A B c

c[illi] = sum; | I |

3
} Row-wise Column- Fixed
wise
Assume matrix dimension (n) is so large that a single row can’t fit into cache.

Misses per inner loop iteration:

2/17/2015

i Matrix Multiplication (kij)

/7> kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][Kk]:
for (J=0; j<n; j++)
clilbil += r * bIKI[1;

Misses per inner loop iteration:

Inner loop:
(i,k) ‘ ’—‘ (k*)
L (i,*)
A B C
Fixed Row-wise Row-wise

A B C Other implementations?
0.125 1.0 0.0
21
| Matrix Multiplication (jki)
7% ki *7 Inner loop:
for G=0; j<n: j+ { (%K) (*)
for (k=0; k<n; k++) { (,0)
¢ = bOam: I w0
for (i=0; i<n; i++) A B C
clilbil += a[il[k]l * r;
¥
} Column- Fixed Column-
wise wise
Misses per inner loop iteration:
A B C
1.0 0.0 1.0
23

CSC252 - Spring 2015

A B ¢
0.0 0.125 0.125
22
Summary of Matrix Multiplication
for (1=0; i<n; i++) {
for (3j=0; j<n; j++) {
ium sz(-JO:k . ijk (& jik):
or (k=0; k<n; ki+ ; ar =
sum += a[i1[K] ~ bIKILI1: ¢ misses/iter = 1.125
c[il[i] = sum;
i
}
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { kij (& ikj):
= a[il[kl; . .
;or ?,[3)[J]-<n; Jro ¢ misses/iter = 0.25
c[illil += r * bIKILi]:
H
3
for (J=0; j<n; j++) {
for (k=0; k<n; k++) { Ly sy
r = bIKILi1: ki (& kji):
for (i=0; i<n; i++) misses/iter = 2.0
chilhl += alillk] * r;
}
3} 24

Computer Organization

Core i7 Matrix Multiply Performance

2/17/2015

Blocked Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i =0; i <n
for 0 = 0; j < n; j+=B)
k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1 = i; il < i+B; i++)
for (41 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)
c[il*n+j1] += a[il*n + k1]*b[kl*n + j1];

3
j1
c a p ®
||
= * [|
[] |]] |
T
Block size Bx B 26

iki / ki
= 50
2
I
S w0
o *jki
8 kji
= ><ijk
g ¥ ik
5 o ——kij
. ke / ik k]
2 5
0
[}
°
& 10
kij / ikj
0
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n) %
Cache Miss Analysis
= Assume:
= Cache line = 8 doubles (elements)
= Three blocks @ fit into cache
= Bis the block size in number of elements n/B blocks
—
= First (block) iteration: [| EEEEE BN
= B2/8 misses for each block _ % =
= 2n/B * B2/8=nB/4 [|
(omitting matrix C) u
= Total misses
= nB/4*(n/B)?=n3/(4B)
27

CSC252 - Spring 2015

Summary

= Blocking: n3/(4B)
= No blocking: n3 * 0.25

= Suggest largest possible block size B, but limit it so three blocks fit into
cache

= | once used block size B=25 elements (doubles), what was the cache size?

= Foundation for performance enhancement:
= Matrix multiplication has inherent temporal locality:
= Input data: 3n2, computation 2n3
= Every array elements used O(n) times!

= But program has to be written properly

28

Computer Organization 2/17/2015

i Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

29

CSC252 - Spring 2015 8

