Computer Organization 2/24/2015

Example C Program

. . main.c swap.c
Llnklng int buf[2] = {1, 2}; extern int buf[];
* int mainQ) int *bufp0 = &buf[0];
{ static int *bufpl;
! swapQ);
return O; void swap(Q)
}
int temp;

Kai Shen
bufpl = &buf[1];

temp = *bufpoO;

*bufp0 = *bufpl;
*bufpl = temp;
3
1 2
Static Linking $ Why Linkers?
= Programs are translated and linked using a compiler driver: = Reason 1: Modularity
= unix> gcc -02 -g -0 p main.c swap.c = Program can be written as a collection of smaller source files, rather
= unix> ./p than one monolithic mass.
- Can build libraries of common functions (more on this later
main.c swap.c Source files -)) ()
l l = e.g., Math library, standard C library, or my own toolbox
Translators Translators = Reason 2: Efficiency
fehpiccIas) fehpAcCIas) = Time: Separate compilation
maL no Sw:Jip.o Separately compiled = Change one source file, compile, and then relink.
object files = No need to recompile other source files.
l l = Space: Libraries
| Linker (Id) | = Common functions can be aggregated into a single library.

l Fully linked executable object file = Multiple running programs can share one library.

(contains code and data for all functions
defined inmain.c and swap.c)

CSC252 - Spring 2015 1

Computer Organization

Linker Does Symbol Resolution

= Programs define and reference symbols (variables and functions):
void swap() {.} /* define symbol swap */
swap(Q); /* reference symbol a */
int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored (by compiler) in symbol table.
= Symbol table is an array of symbol entries;
= Each entry includes name, size, and location of symbol.

= Linker associates each symbol reference with exactly one symbol
definition.

2/24/2015

Linker Does Relocation

Merges separate code sections from multiple object files into
single code section

Same for data sections

Cannot determine the absolute locations/addresses of symbols
before linking. Why?

Relocation
= Relocates symbols from their relative locations in the object files
to their final absolute memory locations in the executable.
= Updates all references to these symbols to reflect their absolute
positions.

Three Kinds of Object Files (Modules)

= Relocatable object file (. 0 file or .a file)

= Contains code and data in a form that can be combined with other
relocatable object files to form executable object file.

= Executable object file (a. out file)

= Contains code and data in a form that can be copied directly into
memory and then executed.

= Dynamic link object file (.s0 file)

= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

CSC252 - Spring 2015

Executable and Linkable Format (ELF)

Standard binary format for object files
Originally proposed by AT&T System V Unix

= Later adopted by BSD Unix variants and Linux
One unified format for

= Relocatable object files (- 0),

= Executable object files (a.out)

= Dynamic link object files (. s0)

Generic name: ELF binaries

Computer Organization 2/24/2015

ELF Object File Format ELF Object File Format (cont.)

Y -symtab section 0
= ELF header ELF header " Y ELF header

Word size, byte ordering, file type (.o, exec, .so) = Symbol table
L] ’ "’ Y 7 ' : . . .
machine type, etc. - text section = Procedure and static variable names - text section

= Section names and locations

.rodata section .rodata section

= .textsection

= .rel_textsection

= Code .data section o X .data section
= Relocation info for . text section
= .rodata section -bss section = Addresses of instructions that will need to be -bss section
. - modified in the executable -
= Read only data: jump tables,symtab section .symtab section

= _rel_datasection
= Relocation info for .data section

.rel .data section = Addresses of pointer data that will need to be .rel._data section
modified in the merged executable

= .datasection -rel . txt section
= Initialized global variables

.rel _txt section

= _bsssection

.debug section .debug section

= Uninitialized global variables = .debug section
= “Block Started by Symbol” Section header table = Info for symbolic debugging (gcc -g) Section header table
= “Better Save Space” = Section header table
= Has section header but occupies no space = Offsets and sizes of each section
9 10
Linker Symbols Resolving Symbols
Global External Local

Global
= Global symbols o

= Symbols defined by module m that can be referenced by other modules. int buf[2] = {1, 2}; \extern int buf[];
= E.g.:non-static C functions and non-static global variables.
int mainQ) int *bufp0 = &bu ;
= External symbols { static int *bufpl;
= Global symbols that are referenced by module m but defined by some swapQ); : -
other module. refurn 0; void swap()<——— Global
3 main.c)
= Local symbols int temp;
= Symbols that are defined and referenced exclusively b_y module m. External Linker knows bufpl = &buf[1];
= E.g.: Cfunctions and variables defined with the static attribute. nothing of temp temp = *bufpO;
*bufp0 = *bufpl;
*bufpl = temp;
¥ swap.c
11 12

CSC252 - Spring 2015 3

Computer Organization

2/24/2015

Relocating Code and Data

Relocatable Object Files Executable Object File

0
System code .text Headers
System data .data System code
main()
\ .text
main.o swapQ)
i _text
main
o —) More system code
int buf[2]={1,2} | -data
System data
int buf[2]={1,2} .data
swap.o / int *bufpO0=&buf[0]
swap() _text int_*bufpl .bss
.symtab
int_*bufp0=8buf]0]| -data .debug
static int *bufpl| _pss
13

Symbol Resolution and Relocation

= Code section change due to relocation at link time

main.c
int buf[2] = {1,2};

int mainQ)

swap(Q);
return O;

}

14

Symbol Resolution and Relocation

= Data section change due to relocation at link time

swap.c
extern int buf[];

int *bufp0 = &buf[0];
static int *bufpl;

void swap() {
int temp;

bufpl = &buf[1];
temp = *bufpO;
*bufp0 = *bufpl;
*bufpl = temp;

15

Packaging Commonly Used Functions

= How to package functions commonly used by programmers?
= Math, I/0, memory management, string manipulation, etc.

= Awkward, given the linker framework so far:
= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient
= Option 2: Put each function in a separate source file
= Programmers explicitly link appropriate binaries into their programs
= More efficient, but burdensome on the programmer

16

CSC252 - Spring 2015

Computer Organization 2/24/2015

Solution: Libraries Creating Static Libraries
atoi.c printf.c random.c
= Concatenate related relocatable object files into a file with an index l
(called an archive). | Translator | | Translator | | Translator |
= Enhance linker so that it tries to resolve unresolved external
references by looking for the symbols in one or more archives. atoi.o printf.o random.o
= If an archive member file resolves reference, link it into the l
executable.

| unix> ar rs libc.a \

| Archiver (ar) atoi.o printf.o .. random.o

= Static libraries
libc.a C standard library

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.

17 18
Commonly Used Libraries Linking with Static Libraries

1'1bc. a (the C standard library) ad multvec. o

= 8 MB archive of 1392 object files. addvec.o)

= 1/0, memory allocation, signal handling, string handling, data and time, l l

random numbers, integer math main2.c vector.h Archiver

libm.a (the C math library) 1 1 (ar)

= 1 MB archive of 401 object files. Translators

= floating point math (sin, cos, tan, log, exp, sqrt, ...) (cpp, ccl, as) libvector.a libc.a Staticlibraries
% ar -t /usr/lib/libc.a | sort % ar -t /usr/lib/libm.a | sort
Relocatable main2.o
fork.o e_acos.o object files
e_acosf.o
fprintf.o e_acosh.o "
fpu_control .o e_acoshf.o | Linker (1d) |
fputc.o e_acoshl.o
freopen.o e_acosl.o .
fscanf.o e_asin.o p Fully linked
fseek.o e_asinf.o executable object file
fstab.o e_asinl.o
19 20

CSC252 - Spring 2015 5

Computer Organization

2/24/2015

Using Static Libraries

= Linker’s algorithm for resolving external references:
= Scan .0 filesand .afiles in the command line order.
= During the scan, keep a list of the current unresolved references.

= As each new .afile is encountered, try to resolve each unresolved
reference in the list against the symbols defined in the library.

= If any entries in the unresolved list at end of scan, then error.

= Problem:
= Command line order matters!
= Always put libraries at the end.

unix> gcc -L. libtest.o -Imine
unix> gcc -L. -Imine libtest.o
libtest.o: In function “main-”:
libtest.o(.text+0x4): undefined reference to ~libfun*

21

Loading Executable Object Files

Dynamic Link Libraries

m Static libraries have the following disadvantages:
= Duplication (every function needs std libc)
= In stored executables
= In the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

= Modern solution: Dynamic link libraries

= Obiject files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

23

i i
Executable Object File Kernel virtual memory
0 0x100000000
ELF header User stack
Program header table createdlatiiuntime) ‘ «——Y%esp
(required for executables) v (stack
.init section t pointer)
text section Memory-mapped region for
shared libraries
.rodata section 0xf7e9ddco
.data section T
.bss section <« brk
Run-time heap
.symtab (created by mal loc)
-debug Read/write segment Loaded
line (.data, .bss) from
1+ the
.strtab Read-only segment executable
(-init, .text, .rodata) file
Section header table 0x08048000
(required for relocatables) Unused 22
0
Dynamic Link Libraries (cont.)
= Dynamic linking can occur when executable is first loaded and run
(load-time linking).
= Common case for Linux, handled automatically by the dynamic linker.
= Standard C library (1 1bc . s0) usually dynamically linked.
= Dynamic linking can also occur after program has begun
(run-time linking).
= In Linux, this is done by calls to the dlopen() interface.
= High-performance web servers.
24

CSC252 - Spring 2015

Computer Organization

Position-Independent Code

= Dynamic link library routines can be shared by multiple processes.
= But may be loaded to different addresses of the processes

= Need position-independent code

= Code that can be loaded and executed at any address without being
modified by the linker

= One approach: indirect reference through a per-process global offset
table

25

2/24/2015

CSC252 - Spring 2015

Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

26

