Computer Organization 2/26/2015

Multiprogramming

= So far we looked at how machine codes run on hardware and how

OS InteraCtion d nd Processes compilers generate machine codes from high-level programs

= Fine if your program uses the machine exclusively.
= But not efficient

= Multiprogramming: multiple programs (possibly belong-to/created-by
different users)

= Efficient sharing of resources (CPU, I/0, networking, ...)

Kai Shen
1 2
Operating Systems Operating System Interaction
= Protection in a multiprogramming context = Perform some special/priviledged functions that a program can’t
= One program shouldn’t steal or alter another’s data handle on its own (for protection and resource management).
= Stop or clean up a program when it does something wrong Examples?

= Open a file on disk
= Resource management in a multiprogramming context
= One program should not be able to monopolize shared resources (CPU,
1/0, networking, ...)

= Process data from a network adapter
= Access an invalid memory address
= Exceptions

i |
= Thus operating systems! = Coordinate between multiple concurrent program runs

= Process management and context switches

CSC252 - Spring 2015 1

Computer Organization 2/26/2015

Exceptions Exception Table 1A32 (Excerpt)
= An exception is a transfer of control to the OS in response to some - — -
. . Exception Number Description Exception Class
triggering event
0 Divide error Fault
Vaar Biraaass 0s 13 General protection fault ~ Fault
14 Page fault Fault
l . 18 Machine check Abort
event —— |_current exception .
I_next exception processing 32-127 0S-defined Interrupt or trap
by exception handler 128 (0x80) System call Trap
O RETR D (L GG 129-255 0OS-defined Interrupt or trap
e return to |_next
*abort
5 6
Synchronous Exceptions Trap Example: Opening File

= User calls: open(filename, options)

Caused by events from the current program execution: = Function open executes system call instruction int

u Traps (system calls)
= Intentional

0804d070 <__libc_open>:

= Returns control to “next” instruction SORcoc2E &) & (i SO0

n Faults (software errors)
. . User Process oS
= Unintentional
= Examples: page faults (recoverable), protection faults (unrecoverable),
floating point exceptions int exception

= Either re-executes faulting (“current”) instruction or aborts open file
n Aborts (hardware errors) returns

= unintentional and unrecoverable

= Examples: parity error, machine check = OS must find or create file, get it ready for reading or writing

= Aborts current program = Returns integer file descriptor

7 8

CSC252 - Spring 2015 2

Computer Organization

Fault Example: Page Fault

int a[1000];
= User writes to memory location ?a' n O
= That portion (page) of user’s memory a[500] = 13;
is currently on disk
| 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process oS

l exception: page fault
Create page and
returns load into memory

Page fault handler must load page into physical memory

movl

= Returns to faulting instruction

2/26/2015

Successful on second try 9

Fault Example: Invalid Memory Reference

int a[1000];

main O
a[5000] = 13;
‘ 80483b7: c7 05 60 e3 04 08 0d movl $0xd , 0x804e360
User Process (o

l exception: page fault

movl

detect invalid address

'——————— signal process

Page handler detects invalid address
Sends SIGSEGYV signal to user process
User process exits with “segmentation fault” 10

Asynchronous Exceptions (Interrupts)

= Caused by external events irrelevant to current program execution
= Arrival of a packet from a network
= Arrival of data from a disk

= OS handlers run in a foreign program context
= Problem for resource accounting

11

CSC252 - Spring 2015

Processes

Return to multiprogramming
Definition: A process is an instance of a running program.
= Not the same as “program” or “processor”

Process provides each program with two key abstractions:
= Logical control flow: each program seems to have exclusive use of the CPU

= Private virtual address space: each program seems to have exclusive use
of main memory

How are these illusions maintained?
= Process executions interleaved (multitasking) or run on separate CPUs
= Address spaces managed by virtual memory system

12

Computer Organization

Concurrent Processes

= Two processes run concurrently (are concurrent) if their flows
overlap in time

= Otherwise, they are sequential

Context Switching

= Control flow passes from one process to another via a context switch
= Managed by the OS (kernel code)

2/26/2015

= Examples (running on single CPU core): Process A Process B
= Concurrent: A& B,A&C
= Sequential: B&C user code
kernel code } context switch
Process A Process B Process C Time 1
| : user code
: kernel code } context switch
Time | !
| : user code
1
| i
13 14
Tork: Creating New Processes Understanding fork
ss N Child Process m
= int fork(void) » pid_t pid = fork(); pid_t pid = fork();
. . . . it (pid == 0) { it (pid == 0) {
= creates a new process (child process) that is identical to the calling printf('hello from child\n"); printf('hello from child\n");
process (parent process) } else { } else {
printf("hello from parent\n™); printf(C'hello from parent\n™);
= returns O to the child process
= returns child’s pid to the parent process
= = pid_t pid = forkQ; pid_t pid = forkQ;
pid_t pid = fork(Q); if (pid == 0) { » if (pid == 0) {
if (pid == 0) { pid =m printf('hello from child\n™); pid=0 printfC’hello from child\n™);
= " = "y - 3} else { } else {
} e?;;nzf(hello from child\n)’ printf("hello from parent\n™); printf(hello from parent\n™);
printf(*hello from parent\n');
pid_t pid = forkQ; pid_t pid = forkQ;
if (pid == 0) { if (pid == 0) {
= Fork is interesting (and often confusing) because it is called once X llnrinEf("hello from child\n); s ;:rinzf("hello from child\n");
. else else
but returns twice » printf("hello from parent\n™); printf(hello from parent\n™);
3
15 hello from parent hello from child 16

CSC252 - Spring 2015 4

Computer Organization 2/26/2015

Fork Example #1 Fork Example #2
= Parent and child both run same code = Both parent and child can continue forking
= Distinguish parent from child by return value from fork void fork_example()
= Start with same state (memory space), but each has a separate, { ;
. printf(*'LO\n"); Bye
private copy after the fork fork(); 11 {Bye
= Relative ordering of their subsequent execution undefined printf(*'L1\n"); Bye
id fork 1 fOI:k();" _— LO | L1 Bye
\{10| ork_example() printf("'Bye\n"); —
int x = 1; b
pid_t pid = forkQ;
if (pid == 0) {
printf(""Child has x = %d\n", ++x);
} else {
printf("'Parent has x = %d\n", --x);
3
17 18
Fork Example #3 Fork Example #4
= Both parent and child can continue forking
void fork_example() Bye void fork_example()
{ - = o
- " . . L2 | Bye printf('LO\n™);
printf(C'LO\N™); if (forkQ '=0) {
U0 " " Bye printf('L1\n"); __ Bye
printf('L1\n"™); L1 |L2 | Bye if (fork() !'= 0) {
forkQ; - Bye printf('L2\n"); Bye
printf('L2\n"); L2 | Bye forkQ); T aye
fork(Q); Bye 3 4 Bye
rintf("'Bye\n"); LojL1|L2 | Bye
3 - ("Byen™) Lo |1 |2 fBye }
printf(*'Bye\n™);
19 20

CSC252 - Spring 2015 5

Computer Organization

execve: Loading and Running
Programs Stack bottom

Null-terminated
n env var strings
Inthexeg¥?§ Null-terminated
Char 1tiename, cmd line arg strings
char *argv[], unused
char *envp[1) envp[n] == NULL
Loads and runs in current process: envp[n-1]
= Executable i lename
= With argument list argv envp(0] environ
i X . argv[argc] == NULL
= And environment variable list envp
argv[argc-1]
= “name=value” strings
» getenv and putenv argv(0]
Overwrites code, data, and stack Linker vars
= keeps pid, open files and signal context ENVD
argv
Does not return (unless error)
argc
Stack frame for
main Stack top

2/26/2015

ex1t: Ending a process

= void exit(int status)
= exits a process, cleans up system resources
= atexit() registers your own function to be executed upon exit

void cleanup(void) {
printf(*'cleaning up\n™);

void fork_example() {
atexit(cleanup);
fork(Q);
exit(0);

}

= Operating system or C library calls?

22

wal t: Synchronizing with Children

int wait(int *child_status)
= suspends current process until one of its children terminates
= return value is the pid of the child process that terminated

= if child_status = NULL, then the object it points to will be set
to a status indicating why the child process terminated

Purposes
= Synchronization with children
= Know the completion status of children

23

wal t: Synchronizing with Children

void fork_example() {
int child_status;

if (forkQ == 0) { HC Bye
printf(""HC: hello from child\n™);

}

else {
printf(""HP: hello from parent\n™);
wait(&child_status);
printf('CT: child has terminated\n™);

HP CT Bye

}
printf('Bye\n");
exit();

CSC252 - Spring 2015

24

Computer Organization

2/26/2015

waitpid(): Waiting for a Specific
Process

= waitpid(pid, &status, options)
= suspends current process until specific process terminates
= various options (see textbook)

25

Children Reaping

= When process terminates, it may still need to respond to its parent
= still consumes system resources (various tables maintained by OS)
= Called a “zombie”: living corpse, half alive and half dead
= Reaping
= Performed by parent on terminated child
= Parent is given exit status information
= Kernel discards process
= What if parent doesn’t reap?

= If any parent terminates without reaping a child, then child will be
reaped by init process

= So, only need explicit reaping in long-running processes
= e.g., shells and servers

26

Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

27

CSC252 - Spring 2015

