Computer Organization





#### **Multiprogramming**

- So far we looked at how machine codes run on hardware and how compilers generate machine codes from high-level programs
- Fine if your program uses the machine exclusively.
  - But not efficient
- Multiprogramming: multiple programs (possibly belong-to/created-by different users)
  - Efficient sharing of resources (CPU, I/O, networking, ...)

2



#### **Operating Systems**

- ⇒ Protection in a multiprogramming context
- One program shouldn't steal or alter another's data
- Stop or clean up a program when it does something wrong
- Resource management in a multiprogramming context
  - One program should not be able to monopolize shared resources (CPU, I/O, networking, ...)
- Thus operating systems!



# **Operating System Interaction**

- Perform some special/priviledged functions that a program can't handle on its own (for protection and resource management).
   Examples?
  - Open a file on disk
  - Process data from a network adapter
  - Access an invalid memory address
  - ⇒ Exceptions
- Coordinate between multiple concurrent program runs
  - Process management and context switches

4

CSC252 - Spring 2015

-

**Computer Organization** 









CSC252 - Spring 2015

7

Computer Organization 2/26/2015









**Computer Organization** 











#### Fork Example #1

- Parent and child both run same code
  - Distinguish parent from child by return value from fork
- Start with same state (memory space), but each has a separate, private copy after the fork
- Relative ordering of their subsequent execution undefined

```
void fork_example()
{
    int x = 1;
    pid_t pid = fork();
    if (pid == 0) {
        printf("Child has x = %d\n", ++x);
    } else {
        printf("Parent has x = %d\n", --x);
    }
}
```

17





# Fork Example #3

Both parent and child can continue forking

```
void fork_example()
{
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("L2\n");
    fork();
    printf("Bye\n");
}
```



19



Computer Organization 2/26/2015









Computer Organization 2/26/2015



# waitpid(): Waiting for a Specific Process

- waitpid(pid, &status, options)
  - suspends current process until specific process terminates
  - various options (see textbook)

25



#### **Disclaimer**

These slides were adapted from the CMU course slides provided along with the textbook of "Computer Systems: A programmer's Perspective" by Bryant and O'Hallaron. The slides are intended for the sole purpose of teaching the computer organization course at the University of Rochester.

27



# **Children Reaping**

- When process terminates, it may still need to respond to its parent
  - still consumes system resources (various tables maintained by OS)
  - Called a "zombie": living corpse, half alive and half dead
- Reaping
  - Performed by parent on terminated child
  - Parent is given exit status information
  - Kernel discards process
- What if parent doesn't reap?
  - If any parent terminates without reaping a child, then child will be reaped by init process
  - So, only need explicit reaping in long-running processes
    - e.g., shells and servers

26