Computer Organization 3/17/2015

The World of Multiprogramming or
Multitasking

She" a nd Signa |s = System runs many processes concurrently

* = Process: executing program

= State includes memory image + register values + program counter

= Regularly switches from one process to another
= Suspend process when it needs I/O resource or timer event occurs
= Resume process when 1/0 available or given scheduling priority
Kai Shen

m Appears to user(s) as if all processes executing simultaneously
= Even though most systems can only execute one process at a time
= Except possibly with lower performance than if running alone

Management of Concurrent Processes Unix Process Hierarchy

= Basic functions
= Tork spawns new process
= Called once, returns twice
= €XeCVe runs new program in existing process
= Called once, (normally) never returns
= exitterminates own process
= Called once, never returns
= Puts it into “zombie” status
= wait and waitpid wait for and reap terminated children

= Programming challenge

= Avoiding improper use of system resources (e.g. “Fork bombs” can disable
a system)

CSC252 - Spring 2015

Computer Organization

Shell Programs

m Ashellis a program that allows users run/control programs.
= sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
= csh BSD Unix Cshell (Ecsh: enhanced csh at CMU and elsewhere)
= bash “Bourne-Again” Shell

int main(Q) {

Execution is a sequence of
char cmdline[MAXLINE];

read/evaluate steps

while (1) {
/* read */
printf('> ");
fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
exit(0);

/* evaluate */
eval(cmdline);

3/17/2015

Simple Shell eval Function

void eval(char *cmdline) {
char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if (Ybuiltin_command(argv)) {
if ((pid = forkQ)) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf(""%s: Command not found.\n", argv[0]);
exit(0);

}

if (bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error(“waitfg: waitpid error');

else /* otherwise, don”t wait for bg job */
printf("%d %s™, pid, cmdline);

i What Is a “Background Job”?

= Users generally run one command at a time
= Type command, read output, type another command

= Some programs run “for a long time”
= Example: “delete this file in two hours”

unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours

= A “background” job is a process we don't want to wait for
unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> # ready for next command

Problem with Simple Shell Example

if ('bg) { 7/* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error™);
3

else /* otherwise, don’t wait for bg job */

printf("%d %s', pid, cmdline);

CSC252 - Spring 2015

= Our example shell correctly waits for and reaps foreground jobs
= But what about background jobs?

= Will become zombies when they terminate

= Will never be reaped because shell (typically) will not terminate

= Will create a memory leak that could run the kernel out of memory

= Once you exceed your process quota, your shell can't run any new
commands for you: fork() returns -1

Computer Organization

Exceptional Control Flow

= Problem
= The shell doesn't know when a background job will finish
= By nature, it could happen at any time

= The shell's regular control flow can't reap exited background processes in
a timely fashion

= Regular control flow is “wait until running job completes, then reap it”

= Solution: Exceptional control flow

= The kernel will interrupt regular processing to alert us when a background
process completes

= In Unix, the alert mechanism is called a signal

3/17/2015

Signals

= Asignal is a small message that notifies a process that an event of
some type has occurred in the system
= akin to interrupts

= sent from the kernel (sometimes at the request of another process) to a
process

= signal type is identified by small integer ID’s (1-30)

ID Name Default Action Corresponding Event
2 SIGINT Terminate
9 SIGKILL Terminate

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore

Interrupt (e.g., ctl-c from keyboard)

Kill program (cannot override or ignore)

Child stopped or terminated

Sending a Signal

= When is a signal sent?

= A system event such as divide-by-zero (SIGFPE), segmentation violation
(SIGSEGV), or the termination of a child process (SIGCHLD)

= Another process has invoked the ki Il system call to explicitly request
the kernel to send a signal to the destination process

= The operating system sends/delivers a signal

11

CSC252 - Spring 2015

10
Receiving a Signal
= A destination process receives a signal when it is forced by the kernel
to react in some way to the delivery of the signal
= Three possible ways to react:
= Ignore the signal (do nothing)
= Terminate the process (with optional core dump)
= Catch the signal by executing a user-level function called signal handler
= Akin to a hardware exception handler being called in response to an
asynchronous interrupt
12

Computer Organization 3/17/2015

Pending and Blocked Signals Process Groups

« Asignal is pending if sent but not yet received = Every process belongs to exactly one process group

= A process can block the receipt of certain signals
= Blocked signals can be delivered, but will not be received until the signal
is unblocked

Back-

pid=20 pid=32 id=40
pgid=20 ground) pgid=32 Sgid=40
job #1
\ Background Background
@ @ process group 32 process group 40
pid=21 pid=22
pgid=20 pgid=20
Foreground
process group 20
13 14

Sending Signals with ki 1 1 Sending Signals from the Keyboard

- L ping ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
= Kill program sends linwe _/Forks foreground process group.

arbitrary signal to a process childi: pid=24818 pgrp=24817 = SIGINT — default action is to terminate each process
or process group Child2: pid=24819 pgrp=24817 = SIGTSTP — default action is to stop (suspend) each process

linux> ps
= Examples PID TTY TIME CMD
= /bin/kill -9 24818 24788 pts/2 00:00:00 tcsh
Send SIGKILL to process 24818 [24818 pts/2 00:00:02 forks |
[24819 pts/2 00:00:02 forks |
24820 pts/2 00:00:00 ps pid=20
=« /bin/kill -9 —24817 [linux> /bin/kill -9 -24817 pgid=20

Back-
ground
job #2

pid=40
ground pgid=40

job

Send SIGKILL to every process | ig'-:’;_#? TINE VD
in process group 24817 24788 pts/2 00:00:00 tcsh Background Background
24823 pts/2 00:00:00 ps process group 32 process group 40
linux>
pid=21 pid=22
pgid=20 pgid=20
Foreground
15 process group 20 16

CSC252 - Spring 2015 4

Computer Organization 3/17/2015

Sending Signals with ki 1 I Function Default Actions

id fork 1
L Lo sl m Each signal type has a predefined default action, which is one of:
pid_t pid[N];

int i, child_status; = The process terminates

for (i = 0; i <N; i++) = The process terminates and dumps core
if ((pid[i] = fork()) ==])
while(1); /* Child infinite loop */ = The process stops until restarted by a SIGCONT signal
/* Parent terminates the child processes */ = The process ignores the signal

for (i = 0; i <N; i++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i =0; i <N; i++t) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printfC"Child %d terminated abnormally\n™, wpid);

Installing Signal Handlers !L Signal Handling Example

void int_handler(int sig) {
safe_printf("Process %d received signal %d\n", getpid(), sig);

= The signal function modifies the default action associated with the exit(0);
receipt of signal signum: b
= handler_t *signal(int signum, handler_t *handler)

void fork_example() {
pid_t pid[N];
int i, child_status;

s Different values for handler: signal (SIGINT, int_handler); -
_ for (i = 0; i < N; i++) Tinux> ./forks
= SIG_IGN: ignore signals of type signum if ((pid[i] = fork()) == o Killing process 25417
.)) _ while(l); /* child inf Killing process 25418
= SIG_DFL: revert to the default action on receipt of signals of type signum 3 Killing process 25419
: . . for (i = 0; i < N; i++) { K g process 25420
= Otherwise, handler is the address of a s:gn_alhandler SrimtPCKiing process % Killing process 26421
» Called when process receives signal of type signum Kill(pid[i], SIGINT); Process 25417 received signal 2
- ., } Process 25418 received signal 2
= Referred to as “installing” the handler or (i =05 i < N: i+ { Process 25420 received signal 2
=« Executing handler is called “catching” or “handling” the signal pid_t wpid = wait(&child_s Process 25421 received signal 2
if (WIFEXITED(child_status Process 25419 received signal 2
= When the handler returns, control passes back to instruction in the control printf("child %d termi Child 25417 terminated with exit status 0
flow of the process that was interrupted by receipt of the signal wpid, WEXITSTAT Child 25418 terminated with exit status O
else Child 25420 terminated with exit status O
printfC'child %d termi Child 25419 terminated with exit status 0
} Child 25421 terminated with exit status O
19 h linux> 20

CSC252 - Spring 2015 5

Computer Organization

Signals Handlers as Concurrent Flows

= Asignal handler is a separate logical flow (not process) that runs
concurrently with the main program
Process A Process A Process B

while (1) handler(Q{
; 3
I

Time | |

= Are they really concurrent? Or asynchronous?
= Where is the stack for signal handler?
= You can have a dedicated signal handling stack.

3/17/2015

Nonquequing Signals

= Pending signals are not queued

= For each signal type, just have single bit indicating whether or not signal is
pending

= There can be at most one pending signal of any particular type, even if multiple
processes have sent this signal

= If two signals of the same type arrive at the process before either is handled, the
signal handler will only run once

22

21
A Program That Reacts to Internally
Generated Events
#include <stdio.h> main() {
#include <signal.h> signal (SIGALRM, handler);
alarm(1); /* send SIGALRM in
int beeps = 0; 1 second */
/* SIGALRM handler */ while (1) {
void handler(int sig) { /* handler returns here */
printf("'BEEP\n™); }
3
if (++beeps < 5)
alarm(1); linux> ./internal
else { BEEP
printf("'BOOMI\n"); BEEP
exit(0); BEEP
3 BEEP
3 BEEP
BOOM!
linux>
23

Re-entrant Function

= Function is re-entrant if it can be interrupted in the middle of one
invocation and safely start another invocation of the same function
before the previous invocation completes

= What kinds of functions may not be re-entrant?
= using global, static, or even thread-local temporary variables
= using locks - may lead to deadlocks, e.g., malloc()

= Not the same as thread-safe functions

http://en.wikipedia.org/wiki/Reentrancy %28computing%29

CSC252 - Spring 2015

24

Computer Organization

= Function is async-signal-safe if

= or non-interruptible by signals.

= Write()isonthelist,printf() isnot

Asynchronous Signal Safety

= either reentrant (all variables stored on stack frame)
= Posix guarantees a list of functions to be async-signal-safe

= One solution: async-signal-safe wrapper for printf:

3/17/2015

void safe_printf(const char *format, ...) {
char buf[MAXS];
va_list args;

va_start(args, format); /*
vsnprintf(buf, sizeof(buf), format, args); /*
va_end(args); /*
write(1l, buf, strlen(buf)); /*

reentrant */
reentrant */
reentrant */

async-signal-safe */

25

CSC252 - Spring 2015

Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

26

