Computer Organization

3/19/2015

System-Level 1/0

1

Kai Shen

1/0 Overview

= Data input-from/output-to external devices (disk storage, network,

terminal ...)

= 1/Ois privileged (must be managed by the operating system)

= Our study

= Focus on the application interface
= A bit of behind-the-scene look to help our understanding
= Much more in OS and networking courses later

= Outline:
= Operating system /O (taking Unix as an example)
= User-level runtime library (C language runtime)
= Internal representation, sharing, and redirection

Unix 1/0 and Files

= Data organization is at the center of /0.

= A Unix file is a sequence of m bytes:
= By, By, By, By g
= “unstructured” data object

= Basic Unix I/O operations (system calls):
= Opening and closing files: open()and close()
= Reading and writing a file: read () and write()
= Changing the current file position: lseek()

|Bo |B1 |"' |Bk-1| By |Bk+1

Current file position = k

Unix “File” Types

= Regular files
= File containing user/app data (binary, text, whatever)
= Directory files
= Afile that contains the names and locations of other files
= Device files
= Terminals (character device) and disks (block device)
= Unix pipes for inter-process communication
= Sockets for network communications
= /proc: An convenient way to access kernel information

- “File” is an object/target for 1/0.

CSC252 - Spring 2015

Computer Organization

Opening Files

Opening a file informs the OS kernel that you are getting ready to
access that file
int fd; /* Ffile descriptor */

if ((fd = open(*'/etc/hosts'", O_RDONLY)) < 0) {
perror(‘open’);
exit(l);

3

Returns an identifying integer file descriptor

= Returns -1 indicates that an error occurred
Each process created by a Unix shell begins life with three open files
associated with a terminal:

= 0:standard input

= 1:standard output

= 2:standard error

3/19/2015

Closing Files

Closing a file informs the kernel that you are finished accessing
that file, so resources can be freed

int fd; /* Ffile descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror(‘‘close™);
exit(l);

3

OS will close all unclosed files when a process terminates

Always check return codes, even for seemingly benign functions
such asclose()

Reading Files

Reading a file copies bytes from the current file position to memory,
and then updates file position

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(“'read");
exit(l);

¥

Returns number of bytes read from file fd into buf
= Return type ssize_tis signed integer
= Returns -1 indicates that an error occurred

= Short counts (nbytes < sizeof(buf))are possible and are not
necessarily errors.

CSC252 - Spring 2015

Short Counts

Short counts can occur in these situations:
= Encountering (end-of-file) EOF on reads
= Reading text lines from a terminal
= Reading and writing network sockets or Unix pipes

Deal with short counts:
= Check return count. Don’t assume you’ve read/written all.
= To reach desired count, you may need to read/write again & again.

Computer Organization 3/19/2015

Simple Unix I/O example Buffered 1/0: Motivation
s Copying standard in to standard out, one byte at a time = Applications sometimes read/write one(few) byte(s) at a time
#include "csapp.h" = Implementing as Unix I/O calls expensive
S e = read and write require OS kernel calls
{ = 10,000 clock cycles
Chagle = Solution: Buffered read
while(read(STDIN_FILENO, &c, 1) != 0) = Use Unix read to grab block of bytes
write(STDOUT_FILENO, &c, 1); : ; i
exit(0): = User input functions take one byte at a time from buffer
3} = Refill buffer when empty
= Works but not efficient. Buffer | already read unread

= Buffered write
= First write to a temporary buffer, then do Unix write in a batch

C Utility I/0 Functions Buffering in C Utility I/O

= Standard I/O functions use buffered I/O

m The Clibrary (1 1bc. s0) contains a collection of higher-level /0 printFCh™y:

functions printf(e™);
printf(*I™);
= Examples of standard I/O functions: printf("1);
Openi d closing files (F d fcl printf(*'o");

= Opening and closing files (Fopen and fclose) buf prINEFC\N™)

= Reading and writing bytes (Fread and fwrite) \

= Reading and writing text lines (Fgets and fputs) Y B AT I

_ e oW . T.

= Formatted reading and writing (fscanf and fprintf)
= |/O models open files as streams

= Abstraction for a file descriptor and a buffer in memory. write(l, buf, 6);

= Buffer flushed to output fd on “\n” or FFlush() call

= But may lose more data when the machine crashes
11 12

CSC252 - Spring 2015 3

Computer Organization

3/19/2015

Unix 1/0 vs. C Utility I/O

= C Utility I/0 is implemented using low-level Unix /O

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf |,
fgets fputs
fflush fseek N
fclose

C application program

Clibrary

open read
write Iseek |«----
stat close

Operating system I/O
(accessed via system calls)

= Which ones should you use in your programs?

13

Unix 1/0 vs. C Utility I/O

= Pros for Unix I/O
= Unix I/O is the most general and lowest raw overhead form of I/0.
= All other 1/0 packages are implemented using Unix 1/0 functions.
= Unix I/O provides functions for accessing file metadata.
= Unix I/O functions are async-signal-safe and can be used safely in
signal handlers.

= Pros for C Utility I/0
= Buffering increases efficiency by decreasing the number of read
and write system calls

= Short counts are handled automatically

How the Unix Kernel Represents Open
Files?

= File descriptors, open files, and v-nodes.

Open file table v-node table
[shared by all processes] [shared by all processes]
[open file instance] [physical file on device]

Descriptor table
[one table per process]

File A
stdin fdo — File access
stdout fd1 " Med
stderr fd2 hilelpos F?Ie o=
fd3 refcnt=1 File type
fd4 ; :
File B
. 1 File access
Two descriptors R File size
referencing two .
Lo g . refcnt=1 File type
distinct open files. - :

15

14
File Sharing
= Two distinct descriptors sharing the same physical file through two
distinct open file table entries
= E.g., Calling open twice with the same Filename argument
. Open file table v-node table
Descriptor table
[one table per process] [shared by all processes] [shared by all processes]
perp [open file instance] [physical file on device]
File A
stdin fdo — File access
stdout fd1 q e i
stderr fd2 File pos File size
fd3 refcnt=1 File type
fda : g
File B
File pos
refent=1
16

CSC252 - Spring 2015

Computer Organization

How Processes Share Files: Fork()

= A child process inherits its parent’s open files
= Note: situation unchanged by exec functions
n Before fork() call:

3/19/2015

How Processes Share Files: Fork()

= A child process inherits its parent’s open files
n After fork():
Child’s table same as parent’s, and +1 to each refcnt

Descriotor table Open file table v-node table
[one tablep er process] [shared by all processes] [shared by all processes]
perp [open file instance] [physical file on device]
File A (terminal)
stdin fdo — File access
e
fd3 refent=1 File type
fd4 ~ g E
File B (disk)
] File access
Aepes File size
refcnt=1 File type
17
I/0 Redirection
= How does a shell implement 1/0 redirection? Not required for your
assignment!
unix> Is > foo.txt
= Answer: By calling the dup2(oldfd, newfd) function
= Copies (per-process) descriptor table entry oldfd to entry newfd
Descriptor table Descriptor table
before dup2(4,1) after dup2(4,1)
fdo fd 0
fdl|a fd1|b
fd 2 fd 2
fd3 fd3
fd4|b fd4|b
19

CSC252 - Spring 2015

. Open file table v-node table
Descriptor table
[shared by all processes] [shared by all processes]
[one table per process] A R . .
[open file instance] [physical file on device]
Parent File A (terminal)
fdo — File access
fd1 —] - —
Fill
fd2 File pos | e size
3 refcnt=2 File type
fda ~| 8 g
: File B (disk)
Child] File access
fdo ——
fd1 File pos File size
fd2 refont=2 File type
fd3 - :
fd4 18
o .
I/0 Redirection Example
= Step #1: open file to which stdout should be redirected
Happens in child executing shell code, before exec
Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
perp [open file instance] [physical file on device]
File A
stdin fdo — File access
stdout fd1 =] o e
stderr fd2 File pos File size
fd3 refent=1 File type
fda [— : :
File B
] File access
File pos F!Ie size
refcnt=1 File t.vpe
20

Computer Organization

I/0 Redirection Example (cont.)

= Step #2: calldup2(4,1)
cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Open file table v-node table
[shared by all processes] [shared by all processes]
[open file instance] [physical file on device]

Descriptor table
[one table per process]

File A
stdin fdo — File access
stdout fd1 N ile si
File size
stderr fd2 File pos N
fd3 refcnt=0 File type
fda [~ : :
File B
1 File access
File pos File size
refcnt=2 File t-ype

21

3/19/2015

Fun with File Descriptors

int main(int argc, char *argv[]) {
int fd1, fd2, fd3;
char cl, c2, c3;
char *fname = argv[1];
fdl = open(fname, O_RDONLY, 0);
fd2 = open(fname, O_RDONLY, 0);
fd3 = open(fname, O_RDONLY, 0);
dup2(fd2, fd3);
read(fdl, &cl, 1);
read(fd2, &c2, 1);
read(fd3, &c3, 1);
printf(*'cl = %c, c2 = %c, c3 = %c\n", cl, c2, c3);
return 0O;

by

Must check return code of system calls in your code!!!
What would this program print for file containing “abcde”?

s cl=a,c2=a,c3=b
22

Fun with File Descriptors (2)

int main(int argc, char *argv[]) {
int fd;
char cl, c2;
char *fname = argv[1];
fd1l = open(fname, O_RDONLY, 0);
read(fd, &cl, 1);
if (fork(Q)) { /7* Parent */
read(fd, &c2, 1);
printf('Parent: cl = %c, c2 = %c\n", cl, c2);
} else { /* Child */
sleep(1);
read(fd, &c2, 1);
printf("Child: cl = %c, c2 = %c\n", cl, c2);
}

return O;

¥

= What would this program print for file containing “abcde”?

23

CSC252 - Spring 2015

Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

24

