Computer Organization 3/24/2015

A System Using Physical Addressing

Main memory

Virtual Memory: Concepts

Physical address
(PA)
CPU 7

ONDURWNRO

Kai Shen

Data word

= Used in “simple” systems like embedded microcontrollers in devices
like cars, elevators, and digital picture frames

A System Using Virtual Addressing Address Spaces

Main memory m Each process has a virtual address space: Set of N = 2" virtual addresses
0: _
CPU Chip 1. {0,1,2,3,..,N-1}
. . 2:
Virtual address Physical address 5. = Each machine has a physical address space: Set of M physical addresses
cPU I8) MMU) 4: {0,1,2,3,.., M-1}
4100 4 5 1 b L, 4,3,
gi J m Each virtual address in a process maps to a physical address on the
8: machine

= Not always ...

Data word

= Used in all modern servers, desktops, laptops, smartphones, ...

CSC252 - Spring 2015 1

Computer Organization

i Why Virtual Memory (VM)?

= Partial physical residence
= Transparently use DRAM as a cache for parts of a virtual address space
= Able to run a program whose total image exceeds the physical memory
size
= Multiplexing

= Multiple processes in the machine, yet each process gets the same
uniform linear address space

= Isolation/protection
= One process can’t interfere with another’s memory
= User program cannot access privileged kernel information

3/24/2015

VM Allows Partial Memory Residence

= A process’s virtual memory space

= Partly cached in physical memory, or DRAM (efficient utilization of
memory space) but always backed by a disk copy.

= VM allows transparent caching by the operating system

= A basic unit of memory blocks in the virtual memory space is a
pages (typically 4 kilobytes)

Virtual memory Physical memory

VPO
VP1

0
Unallocated

Cached

Uncached

Unallocated

Cached

\ Empty PPO
PP1

Empty

Uncached >< Empty
Cached PP 2m-p-1

VP 27-1 | Uncached v

N-1

Virtual pages (VPs) Physical pages (PPs)

cached in DRAM

DRAM Cache Organization

= DRAM cache organization driven by the enormous miss penalty
= Disk is about 10,000x slower than DRAM

= The speed gap allows complex software management
= Fully associative
= Any virtual page can be placed in any physical page
= Requires a flexible/large mapping function — different from CPU caches
= Highly sophisticated, expensive replacement algorithms

CSC252 - Spring 2015

Page Tables

= A page tableis an array of entries (PTEs) that maps virtual pages to
physical pages.
= Per-process kernel data structure in DRAM

Physical page

Physical memory

(DRAM)
number or o
Valid disk address on PPO
PTEO| 0 null Nk
1 —
VP4 PP3
1 —
0 e
1 Ll
0 null X Virtual memory
0 - hRY (disk)
PTE7[1 o« .] V1
Memory resident ~~_ . P2
page table
(DRAM) VP3

N VP4
~

VP 6

VP7

’
I I

Computer Organization

Page Hit

= Page hit: reference to VM location that is in physical memory

3/24/2015

Page Fault

= Page fault: reference to VM location that is not in physical memory
(DRAM miss)

Physical page

Virtual address number or (DRAM)
Valid disk address x: ; PPO
PTEO| 0 null o
L S VP4 PP3
1 «—
0 «
1 CaiS
0 null P Virtual memory
0 . AN (disk)
el e

.
.
Memory esident s, |

(DRAM hit)
hsical Physical memory
Virtual address Physical page (DRAM)
number or VP 1
Valid disk address VP2 PPo
PTEO| 0 null VP 7
«—
VP4 PP3
1 —
0 e
1 ot
0 ol S Virtual memory
0 S Sl (disk)
PTE7[1 o<
Mermory resident ~~ e
N s w
(DRAM) Tl v
9
.
Handling Page Fault
= Page miss causes page fault (an exception)
. Physical memory
Physical page (DRAM)
Virtual address number or VPl
Valid disk address VP2 PPo
PTEO| 0 null VP7
1 — VP4 PP3
1 —
0 e
1 CtS
0 ool > Virtual memory
0 o AN (disk)
PTE7[1 CAEN S
Memory resident\\ \\
e T
(DRAM) AN e
11

CSC252 - Spring 2015

e L T
(DRAM)
10
Handling Page Fault
= Page miss causes page fault (an exception)
= Page fault handler selects a victim to be evicted (here VP 4)
. Physical memory
Physical page (DRAM)
Virtual address number or
Valid disk address xi; PPO
PTEO| 0 null P 7
1 — VP4 PP3
1 -—
0 «
1 CanlS
0 null X Virtual memory
0 - ISR (disk)
e e AN
Memory resident ~~_ Sso
9o N m v
(DRAM)
12

Computer Organization 3/24/2015

. o
Handling Page Fault Handling Page Fault
= Page miss causes page fault (an exception) = Page miss causes page fault (an exception)
= Page fault handler selects a victim to be evicted (here VP 4) = Page fault handler selects a victim to be evicted (here VP 4)
= Offending instruction is restarted: page hit!
. Physical memory X Physical memory
Physical page (DRAM) Physical page (DRAM)
Virtual address number or Virtual address number or
Valid disk address zii PPO Valid disk address x:; PPO
PTEO| 0 null P PTEO| 0 null P 7
1 — VP3 PP3 1 VP3 PP3
1 «— 1 «—
1 — 1 —
0 . 0 .
0 null -~ Virtual memory 0 null -~ Virtual memory
0 S S (disk) 0 S S (disk)
el B e
Memory resident ~~_ _ ‘\\ Memory resident ~~_ ‘\\
page table AUEERNS page table AN
(DRAM) ‘\\\ SS (DRAM) ‘\\\ Se
13 14

Locality to the Rescue Again! VM Enables Memory Space Multiplexing

= Virtual memory-based caching works because of locality = Key idea: each process has its own virtual address space

o o = |t can view memory as a simple linear array
= Atany pointin time, programs tend to access a set of active virtual

pages called the working set
= Programs with better temporal locality will have smaller working sets

= Mapping function scatters addresses through physical memory as needed
= Also enables sharing (e.g., PP 6)

. .) . Virtual 0 Address 0 Physical
= If (working set size < main memory size) Agdua translation Ad);ress
i . ress VP 1
= Good performance for one process after compulsory misses (first Space for VP 2 PP 2 Space
loading of data) Process 1: (DRAM)
= If (working set size > main memory size) N-1 L1
= Thrashing: Performance meltdown where pages are swapped (copied) PP6 :ieb‘i’r;e;‘::)'"v
in and out continuously °
Virtual PP 8
Address VP 1
Space for VP2
Process 2: \:’
N-1] M-1
15 16

CSC252 - Spring 2015 4

Computer Organization

Simplifying Linking and Loading

L. 0xc0000000
= Linking e
= Each program has similar virtual
address space
= Code, stack, and shared libraries
always start at the same address

0x40000000
= Loading

= execve() allocates virtual pages
for .text and .data sections

= creates PTEs marked as invalid
The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

0x08048000

0

Kernel virtual memory

User stack
(created at runtime)

v
?

Memory-mapped region for
shared libraries

I

Run-time heap
(created by mal loc)

Read/write segment
(.data, .bss)

Read-only segment
(-init, . text, .rodata)

Unused

Memory
* invisible to
user code

<«—Yesp
(stack
pointer)

«— brk

Loaded
from

the
executable
file

17

3/24/2015

VM as a Tool for Memory Protection

= Extend PTEs with permission bits

= Page fault handler checks these before remapping
= If violated, send process SIGSEGV (segmentation fault)

VM Address Translation

= Virtual address must be translated into physical address for data

accesses

= When does it happen?

= Compile time? Link time? Load time? Runtime?

% It must be fast!
% It must be protected!

19

CSC252 - Spring 2015

Physical
Process i: READ WRITE Address Address Space
VP 0: Yes No PP 6
VP 1: Yes Yes PP 4 3
VP 2: Yes Yes PP 2
.
. PP 4
.
PP 6
i: READ WRITE Address
Process j: P8
VP 0: Yes No PP9 PP9
VP 1: Yes No PP 6
VP2: | Yes | Yes PP11 A2 il
18
. .
Address Translation With a Page Table
Virtual address
Page table ! PPl o
base register —| Virtual page number (VPN) | Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process Valid Physical page number (PPN)
Valid bit = 0:
page not in memory €———
(page fault)
m-1 p pl 4
Physical page number (PPN) Physical page offset (PPO)
i ?
Where is the page table? Physical address
20

Computer Organization

Address Translation: Page Hit

CPU Chip PE.EA
e PTE
cPU MMU (3] Cache/
PA Memory
o
Data
e

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

21

3/24/2015

Address Translation: Page Fault

Exception -b{
0

Page fault handler ‘

U

Speeding up Translation with a TLB

= Page table entries (PTEs) are in memory

= One access to memory becomes two (even under a page hit)!

= Solution: Translation Lookaside Buffer (TLB)
= Small hardware cache in MMU
= Maps virtual page numbers to physical page numbers
= Contains complete page table entries for small number of pages

23

CSC252 - Spring 2015

CPU Chip 0 P'I'oEA Victim page
o VA MMU PTE Cache/ Disk
o o Memory
New page
1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction 22
TLB Hit
CPU Chip P
e PTE
VPN e
VA PA
CPU MMU) Cache/
Memory

Data

A TLB hit eliminates a memory access
24

Computer Organization 3/24/2015

TLB Miss Multi-Level Page Tables
Level 2
, = Suppose: Tables
CPU Chip TLB o = 4KB (2'?) page size, 48-bit address space, 8-byte PTE
(2 PTE = Problem:
VPN = Would need a 512 GB page table! Level 1
o o . 298% 212 % 932239 htes Table
-bi i 1 —
@ VA Y PTEA = The 48-bit address space is mostly unused!
Cache/
3 Memory = Common solution:
= Multi-level page tables
oo = Example: 2-level page table
e = Level 1 table: each PTE points to a page table
= Level 2 table: each PTE points to a page
A TLB miss incurs an additional memory access (the PTE) (many level-2 tables are empty and therefore are
Fortunately, TLB misses are rare in practice. Why? unneeded; even if they are needed, they can be paged in
and out of the DRAM)
25 26
A Two-Level Page Table Hierarchy Summary
Level 1 Level 2 Virtual
. .
page table page tables memory = Programmer’s view of virtual memory
Y = Each process has its own private linear address space
pos | ——T rreo = Cannot be corrupted by other processes
VP 1023 2K allocated VM pages
PTEL VP 1024 for code and data = System view of virtual memory
PTE 2 (null) PTE 1023 . o
T = Uses memory efficiently by caching virtual memory pages
PTE 4 (] — VP 2047 « Efficient only because of locality
PTE 5 (null)) = Simplifies memory management and programming
PTE 6 (null) PTE 1023 = Simplifies protection by providing a convenient interpositioning point
PTE 7 (null) Gap 6K unallocated VM pages to check permissions
PTES P = Virtual address translation must be fast and protected
(1K-9) PTEs
null PTEs PTE 1023 1023
unallocated 1023 unallocated pages
\ pages
. VP 9215 1 allocated VM page
32 bit addresses, 4KB pages, 4-byte PTEs - for the stack 27 28

CSC252 - Spring 2015 7

Computer Organization 3/24/2015

i Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

29

CSC252 - Spring 2015 8

