Computer Organization

Virtual Memory: Systems

il

Kai Shen

3/27/2015

Simple Memory System Example

= Addressing
= 14-bit virtual addresses
= 12-bit physical address
= Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1)

N Y

VPN VPO

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPN PPO
Physical Page Number Physical Page Offset

Simple Memory System Page Table

VPN | PPN | Valid VPN | PPN | Valid

. 00 28 1 08 13 1

OnIY show first 16 o1 — 0 0 IE) 1
entries (out of 256) 02 3 1 oA 09 1
03 02 1 0B - 0

04 - 0 oc - 0

05 16 1 0D 2D 1

06 - 0 OF 11 1

07 - 0 OF 0D 1

Virtual Address: 0x03D4
13 12 11 10 9 8 7 6 5 4 3 2

-

[ofofoJoJafsJafafof1]of2]o]o0]
VPN VPO
Physical Address
11 0 9 8 7 6 5 4 3 2 1 0
[0JoJaJaJofafof1]of1]o0f0]
PPN PPO

CSC252 - Spring 2015

Intel Core i7 Memory System

Processor package

i Core x4
Registers Instruction MMU
€ fetch (addr translation)
| L1 d-cache ‘ L1i-cache ‘ L1d-TLB ‘ ‘ L1i-TLB ‘
32 KB, 8-way 32 KB, 8-way 64 entries, 4-way 128 entries, 4-way
‘ L2 unified cache ‘ ‘ L2 unified TLB ‘
256 KB, 8-way 512 entries, 4-way
el i, Toothe
QuickPath interconnect =3 cores
4links @ 25.6 GB/seach | | | To I/O
I é bridge
L3 unified cache DDR3 Memory controller :
8 MB, 16-way 3 x 64 bit @ 10.66 GB/s
(shared by all cores) 32 GB/s total (shared by all cores)
Main memory 4

Computer Organization

3/27/2015

TLB
miss

End-to-end Core i7 Address Translation

32/64

Result

L2,L3,and
main memory

L1
hit

L1 d-cache

TLB
hit

L1
miss

(64 sets, 8 lines/set)

L1 TLB (16 sets, 4 entries/set)

1]

TIITIIIT

9 9 9

Core i7 Page Table Translation

40 12 40 6 6
PPN | PPO | == cl
Physical
CR3 address - |
(PA)
Page tables 5
Trick for Speeding Up L1 Access
Tag Check
40 6
address
(PA) PPN
[e[STe[éTé[e 4]
Address
Virtual Translation
address 11 Cach
(VA) VPN ache
= Observation 3 ©
= Bits that determine Cl identical in virtual and physical address
= Canindex into cache while address translation taking place
= Generally we hit in TLB, so PPN bits (CT bits) available next
= “Virtually indexed, physically tagged”
= Cache carefully sized to make this possible
7

el El El 9 12 Virtual
[wnt] wenz [weN3 [venNa | VPO |
address
L1PT L2 PT L3PT L4 PT
Page global Page upper Page middle Page
40 directory lao directory 40 directory 40 table
CR3
Physical
address Offset into
of L1 PT 12 physical and
—[L1PTE |H " L2PTE |- L 13PTE |- L4 PTE virtual page
Physical
address
512GB 1GB 2MB 4KB of page
region region region region
per entry per entry per entry per entry
4
40 12 Physical
PPN PPO | address
. o
Virtual Memory of a Linux Process
Process-specific data
. structs (ptables,
Different for P :
task and mm structs,
each process Kernel
kernel stack) N
virtual
. i memor
Identical for Physical memory y
each process
P Kernel code and data
User stack
%esp 7
Memory mapped region
for shared libraries
Process
brk t virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
0x08048000 (32) Program text (.text)
0x00400000 (64) 8
0

CSC252 - Spring 2015

Computer Organization

Page Fault Handling

Process virtual memory

shared libraries

Segmentation fault:
accessing a non-existing page

data l_read Normal page fault

text a Protection exception:

l_write e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

3/27/2015

Demand paging

= Key point: instantiate the physical existence of virtual pages
only when necessary!
= Known as demand paging
= Enabled by virtual memory

= Crucial for space and time efficiency

10

Program Loading

Initial execution of a program

= Create page table mapping for the program text and data, but not
necessarily load them right away

= Page table entries for unloaded text/data areas are invalid; memory is
loaded on-demand

It saves space since parts of the program image may never be needed
It also reduces to startup delay

11

CSC252 - Spring 2015

User-Level Memory Mapping

oid *mmap(void *start, int len,
int prot, int flags, int fd, int offset)

len bytes
start
(or address
len bytes chosen by kernel)
offset
(bytes)
0 0
Disk file specified by Process virtual memory
file descriptor ¥d 12

Computer Organization 3/27/2015

i Using mmap to Read File i Sharing Revisited: Shared Objects

= mmap —lazy file read to buffer.
= Fast start;

| di | £ d d d Process 1 Physical Process 2 = Process 1 maps
= Real read is only performed on-demand. virtual memory memory virtual memory .
il) s the shared object.

13 14

Sharing Revisited:
Sharing Revisited: Shared Objects . : .
i g) Private Copy-on-write (COW) Objects
Process 1 Physical Process 2 m Process 2 maps Process 1 Physical Process 2 = Two processes
virtual memory mry virtual memory the shared object. virtual memory memory virtual memory mapping a private
s m Shared objects are copy-on-write
| . typically read only. 1 (COW) object.
] ~ L |- . b5 Private = Area flagged as
]- copy-on-write private copy-on-
| |~ area write
m PTEs in private areas
are flagged as read-
only
15 16

CSC252 - Spring 2015 4

Computer Organization

Sharing Revisited:
Private Copy-on-write (COW) Objects

Process 1 Physical Process 2 = Instruction writing

virtual memory memory virtual memory to private page

triggers protection
I \ﬂifpo\n\-write fault.
= Handler creates new
- Write to private R/W page.
copy-on-write -
page

Instruction restarts
upon handler
return.

= Copying deferred as
long as possible!

17

3/27/2015

The fork Function Revisited

VM and memory mapping explain how fork provides private address
space for each process.

To create virtual address for new new process
= Create exact copies of current memory area structures and page tables.
= Flag each page in both processes as read-only
= Flag each memory area in both processes as private COW

On return, each process has exact copy of virtual memory.

Subsequent writes create new pages using COW mechanism.

18

Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

19

CSC252 - Spring 2015

