Computer Organization

Dynamic Memory Allocation:
Basic Concepts

1

Kai Shen

3/31/2015

Dynamic Memory Allocation

Programmers use dynamic

memory allocators (such as User stack
mal loc) to acquire memory
at run time. .

= For data structures whose
size is only known at runtime.

Heap (viamal loc)

Uninitialized data (.bss)

Dynamic memory allocators Initialized data (- data)

manage an area of process Program text (. text)

virtual memory known as the

heap. 0

Dynamic Memory Allocation

= Allocator maintains heap as collection of variable sized blocks,
which are either allocated or free

= Types of allocators

= Explicit allocator: application allocates and frees space
= E.g., mallocand freeinC

= Implicit allocator: application allocates, but does not free space
= E.g. garbage collection in Java, ML, and Lisp

= We start our discussion on explicit memory allocation

CSC252 - Spring 2015

The mal loc Package

#include <stdlib_.h>

Vo

vo

id *malloc(size_t size)
= Successful:
= Returns a pointer to a memory block of at least Size bytes
(typically) aligned to 8-byte boundary
= If size==0, returns NULL
= Unsuccessful: returns NULL (0) and sets errno
id free(void *p)
= Returns the block pointed at by p to pool of available memory
= P must come from a previous memory allocation call like mal loc

Part of the C library, occasionally invokes a system call to change the
heap size

Computer Organization

3/31/2015

Allocation Example

pr=mallocd [T TTTITTTTT]
p2=malloc® [[[[[TTTTTTTTTTITT]
p3=malloe® [[[[[[[[[T[]
free(p2) LTI T T T T I T IIT 1]
pd=mallocd [[[TTTTTTTTTTTTI]

Constraints

= Applications
= Canissue arbitrary sequence of mal loc and free requests
= Free request must be to an previously allocated block

= Allocators
= Must allocate blocks from free memory
= Can manipulate and modify only free memory
= Can’t move the allocated blocks, e.g., compaction is not allowed
= Must align blocks so they satisfy all alignment requirements
= 8 byte alignment for GNU LIBC mal loc on Linux machines

Interaction with OS

= brk system call

= Change heap size

User stack

*

Heap (viamal loc)

Uninitialized data (.bss)

Initialized data (. data)

Program text (. text)

Top of heap
(brk ptr)

CSC252 - Spring 2015

Performance Goal: Runtime Speed

= Given some sequence of mal loc and free requests:
® RyRy..oRy)Ros

= Speed —throughput:
= Number of completed requests per unit time
= Example:
= 5,000 malloc calls and 5,000 free calls in 10 seconds
= Throughput is 1,000 operations/second

Computer Organization

Performance Goal:
Memory Utilization

= Given some sequence of mal loc and free requests:
= Ry Ry Ry, Ry

= Def: Aggregate payload P,

= malloc(p) results in a block with a payload of p bytes

= After request R, has completed, the aggregate payload P, is the sum of
currently allocated payloads

» Def: Heap size H,
= Maximum heap size so far

m Def: Peak memory utilization after k requests
s Ug=(max,P;) / H,

= Goals: achieve high runtime speed and memory utilization
= Somewhat conflicting

3/31/2015

Fragmentation

= Poor memory utilization caused by fragmentation
= internal fragmentation
= external fragmentation

10

Internal Fragmentation

= For a given block, internal fragmentation occurs if payload is smaller
than block size

Block
A
Internal Internal
| — e R
fragmentation Bavicad fragmentation

= Caused by
= Overhead of maintaining heap data structures
= Padding for alignment purposes

11

CSC252 - Spring 2015

External Fragmentation

= Occurs when there is enough aggregate heap memory, but no
single free block is large enough

pr=malloccd [[[[[TTT[TTTTTTTI]

pz=mallocs [[[[[[[[[[[TTTTTI]

p3=malloc®) [[[[[[[[[TTTTTTTII]

free(p2) HEEEEEEEEEEEEEEEN

p4 = malloc(6) Oops! (what would happen now?)

12

Computer Organization

Structure of Allocated Block

» Standard method

= Keep the length of a block in the first word of the block.
= This word is often called the header field or header

= Requires an extra word for every allocated block

p0

po = mattoc | |] [[T T T 11 [T

block size data

free [[[T [T [T 1T T [

3/31/2015

Free Block Management

= How to keep track of free blocks?

= Allocate from free blocks:
= How do we pick a block to use for allocation — many might fit?

= How do we reinsert freed block?

14

13
Keeping Track of Free Blocks
= Method 1: Implicit list using length—links all blocks
s| || e e |
= Method 2: Explicit list among the free blocks using pointers
5 | B R
= Method 3: Segregated free list
= Different free lists for different size classes
15

CSC252 - Spring 2015

Method 1: Implicit Free Block List

s For each block we need both size and allocation status
= Could store this information in two words: wasteful!
= Standard trick

= If blocks are aligned, some low-order bits in block size (e.g., 3 bits
for 8-byte alignment) are always 0

= Instead of storing an always-0 bit, use it as an allocated/free flag

= When reading size word, must mask out this bit
1 word

Size | a a = 1: Allocated block
a=0:Free block

Format of
allocated and Size: block size

Payload
free blocks -
Payload: application data

(allocated blocks only)

Optional
padding

16

Computer Organization

Detailed Implicit Free List Example

start U”“SE“/\ /\/—\ /\

ol BT T T T 1 i

of
heap

' Double-word Allocated blocks: shaded
aligned Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

17

3/31/2015

Implicit List: Finding a Free Block

u First fit:
= Search list from beginning, choose first free block that fits:
= Can take linear time in total number of blocks (allocated and free)
= It may cause “splinters” at beginning of list
n Next fit:
= Like first fit, but search list starting where previous search finished
= Should often be faster than first fit: avoids re-scanning unhelpful blocks
= Some research suggests that fragmentation is worse
= Best fit:
= Search the list, choose the best free block: fits, with fewest bytes left over
= Keeps fragments small—usually helps fragmentation
= Will typically run slower than first fit

18

Implicit List: Allocating in Free Block

= Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we might want
to split the block

19

CSC252 - Spring 2015

Implicit List: Freeing a Block

= Simplest implementation:

= Need only to clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

= But can lead to “false fragmentation”

free(p) p

e[T I8 sl [2] |2

malloc(5) Oops!

There is enough free space, but the allocator won't be able to find it

20

Computer Organization

Implicit List: Coalescing

= Join (coalesce) with next/previous blocks, if they are free
= Coalescing with next block

? logically
free(p) P gone
al || AR e] [[[2] [

= But how do we coalesce with previous block?
21

3/31/2015

Implicit List: Bidirectional Coalescing

= Boundary tags [Knuth73]
= Replicate size/allocated word at “bottom” (end) of blocks
= Allows us to traverse the “list” backwards, but requires extra space

Constant Time Coalescing (Case 1)

ml 1 ml 1

ml 1 ml 1

n 1 n 0
—_—

n 1 n 0

m2 1 m2 1

m2 1 m2 1

23

CSC252 - Spring 2015

al | aJaliifa e] [[[[s[«lTITa
Header —— Size a a = 1: Allocated block
a =0: Free block
Format of . .
allocated and Payload and Size: Total block size
ddi
free blocks FERLY Payload: Application data
(allocated blocks only)
Boundary tag Size a
(footer)
22
Constant Time Coalescing (Case 2)
ml 1 ml 1
ml 1 ml 1
n 1 n+m2 0
—_—
n 1
m2 0
m2 0 n+m2 0
24

Computer Organization

ml

Constant Time Coalescing (Case 3)

ml

m2

m2

n+ml 0
n+ml 0
m2 1
m2 1

25

3/31/2015

Constant Time Coalescing (Case 4)

n+ml+m2

0

ml 0
ml 0
n 1
_
n 1
m2 0
m2 0

n+ml+m2

0

26

free

= Footer only in free blocks

= But require more maintenance

Space use of footers

= No need to coalesce in allocated blocks

= Solution to eliminate the footer’s space cost:

= Additional space consumption. Can it be optimized?
= Footer tag is free in free blocks

= Use another bit in each allocated block’s header (remember that we
have 3 free bits) to indicate whether the preceding block is allocated or

= Every free must update next allocated block’s preceding-block-allocation bit
= Every allocation must know whether the preceding block is free or allocated

27

CSC252 - Spring 2015

Implicit Free Block Lists: Summary

Implementation: very simple
Free cost:

= constant time worst case

= even with coalescing
Allocation cost:

= linear time worst case
Memory usage:

= Depend on placement policy: first-fit, next-fit or best-fit

Not used in general allocator because of slow (linear-time)

allocation

28

Computer Organization 3/31/2015

i Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

29

CSC252 - Spring 2015 8

