Computer Organization 4/2/2015

. . Keeping Track of Free Blocks
Dynamic Memory Allocation:

Advanced Concepts = Method 1: Implicit list using length—links all blocks
T~
* s| [[[MR s] [[[[20

I » Method 2: Explicit list among the free blocks using pointers

Kai Shen = Method 3: Segregated free list
= Different free lists for different size classes

Explicit Free Lists Explicit Free Lists

Allocated (as before) Free .
| = Logically:
Size a Size a
— A =8 [c |

Next
Payload and Prev
padding = Physically: blocks can be in any order
Size a Size a Forward (next) links

= Maintain list(s) of free blocks, not all blocks la] alal | Tals| 4
= The “next” free block could be anywhere LQ C Back (prev) links
= So we need to store forward/back pointers, not just sizes

= Luckily we track only free blocks, the space usage is pretty much free
= Still need boundary tags for coalescing

CSC252 - Spring 2015

Computer Organization 4/2/2015

i Allocating from Explicit Free Lists i Allocating From Explicit Free Lists
conceptual graphic
m First fit Before °
= Next fit
= Best fit
(N J
After ° (with splitting)
\ R |
o
= malloc(..)
5 6
i Freeing to Front i Freeing to Front (Coalescing)
conceptual graphic conceptual graphic
Before Before f
free(° ree(

Root \o
m./|\lo f%ﬁw 1>

= Insert the freed block at the root of the list
After

= Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list

After

wx @ [LLL(«0 | il \V m‘
I—»ITO\ EEEN \W-
= Simple and constant time

CSC252 - Spring 2015 2

Computer Organization

Explicit List Summary

= Comparison to implicit list:
= Allocate is linear time in number of free blocks instead of all blocks
= Much faster when most of the memory is full

= Slightly more complicated allocation and free since needs to splice
blocks in and out of the list

= Some extra space for the links (only in free blocks)

= But linear allocation time is still bad!

Keeping Track of Free Blocks

= Method 1: Implicit list using length—links all blocks

s [1] el [[[=9

= Method 2: Explicit list among the free blocks using pointers

m Method 3: Segregated free list
= Different free lists for different size classes

10

Segregated List Allocators

m Each size class of blocks has its own free list

RN NN BN
se [[T TTTTHITITITF
oinf [[TTTTTTTITTITITITT

11

Segregated List Allocator

= To allocate a block of size n:
= Search appropriate free list for block of size m > n
= If an appropriate block is found:
= Split block and place fragment on appropriate list
= If no block is found, try next larger class
= Repeat until block is found
= To free a block:
= Coalesce and place on appropriate list
= Advantages of segregated list allocators
= High speed
= Linear on the number of lists
= log time for power-of-two size classes
= Good memory utilization

= Approximates a best-fit search of entire heap.
12

CSC252 - Spring 2015

4/2/2015

Computer Organization

Implicit Memory Management:
Garbage Collection

= Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

= How does the memory manager know when memory can be freed?
= If we can tell that programs will have no way to access certain heap
objects

void foo() {
String[] p = new String[2];
return; /* p block is now garbage */

}

= All heap accesses must be made through known “references” (think of
Java)

13

Memory as a Graph

= We view memory as a directed graph
= Each data object is a node in the graph
= Each reference is an edge in the graph
= Registers, global variables, locations on the stack are always reachable

Root nodes }) ﬁ) Q\

Heap nodes O reachable
O Not-reachable
(garbage)
o(i ©

A node (object) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be accessed by the program)
14

Mark and Sweep Collecting

= Garbage Collection
= Use extra mark bit in the head of each block
= Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

root Note: arrows
' ' — here denote
Beforemark | | | [| o] [« | |][] memory refs, not

free list ptrs.

VAN AN
aftermark [1L LI LT A L LT L1 1] [markbitset
/\V /_\

Aftersweep | | |dree| o] [M[] free | | | |

15

CSC252 - Spring 2015

Garbage Collection for C

= Problem for C garbage collection
= References (pointers) are not strongly regulated

= Forinstance, can point to middle of an allocated block
ptr
Header 1

= Ctypes can be cast back and forth
= | cast ptrinto an integer, subtract 1024 and save it

= Later | add 1024 to the saved value and cast it back to a pointer, then
dereference it ...

16

4/2/2015

Computer Organization

i Memory-Related Perils and Pitfalls

= Reading uninitialized memory

= Overwriting memory

= Misunderstanding of pointer arithmetic
= Referencing nonexistent variables

= Referencing freed blocks

= Failing to free blocks

17

i Reading Uninitialized Memory

= Assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {
int *y = malloc(N*sizeof(int));
int i, j;
for (i=0; i<N; i++)
Ffor (3=0; j<N; j++)
y[i] += ALTIL*xLil;
return y;

}

18

i Overwriting Memory

int **p;
p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

s Off-by-one error

19

CSC252 - Spring 2015

$ Overwriting Memory

= Not checking the max string size

char s[8];

gets(s); /* reads “123456789” from stdin */

m Basis for classic buffer overflow attacks

20

4/2/2015

Computer Organization 4/2/2015

i Misunderstanding of Pointer Arithmetic i Referencing Nonexistent Variables
m Forgetting that local variables disappear when a function returns
int *search(int *p, int val) {
while (*p && *p I= val) int *foo) {
p += sizeof(int); int val;
return p; return &val;
3 3
21 22
| Referencing Freed Blocks ‘ Failing to Free Blocks (Memory Leaks)
= Slow, long-term killer!
X = ma!loc(N*sizeof(int)); foo) {
<manipulate x> int *x = malloc(N*sizeof(int));
free(X); o
return;
""" 3

y = malloc(M*sizeof(int));
for (i=0; iI<M; i++)
yL[i1 = x[i]++;

23 24

CSC252 - Spring 2015 6

Computer Organization

Failing to Free Blocks (Memory Leaks)

= Freeing only part of a data structure

struct list {
int val;
struct list *next;

}:
foo() {

struct list *head = malloc(sizeof(struct list));
head->val = 0;

head->next = NULL;

<create and manipulate the rest of the list>
free(head);

return;

25

Dealing With Memory Bugs

Conventional debugger (gdb)
= Not able to do much

Debugging mal loc
= Wrapper around conventional mal loc

= Add canary values on allocation boundaries and do sanity checks
sometimes

Some malloc implementations contain checking code
= Linux glibc malloc: setenv MALLOC_CHECK_ 2

Binary translator: valgrind, Purify
= Maintain memory map/status structure for each byte
= Instrument data accesses to check for errors

26

Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

27

CSC252 - Spring 2015

4/2/2015

