Computer Organization 1/22/2015

Bits, Bytes, and Integers
Blts’ Bytes’ a nd |ntege rs = Representing information as bits
n
il -
L]
|
L]
Kai Shen
1 2
Byte-Oriented Memory Organization Encoding Byte Values
>
o NS
- & P
® < = Byte = 8 bits 0 [0 [ 0000
LT T T T T == TTTTTT] = Binary 00000000, to 11111111, st el
= Programs Refer to Virtual Addresses = Decimal: 010 t0 25510 431 2 8%(1)
= Conceptually very large array of bytes = Hexadecimal 0016 to FF1s ) g g 812%
= Actually implemented with hierarchy of different memory types - lZase :16 numberorepre;ent:tlzn . 7 [ 7 [0111
. X . B " = Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 8 18 [ 1000
= System prov@es address space private to particular “process + Write FALD37B1s in C as 9 T9 1001
= Program being executed OXFAID378B A [10] 1010
= Program can clobber its own data, but not that of others B 11111011
, Oxfald37b C |12] 1100
s Compiler + Run-Time System Control Allocation D |13 1101
= Where different program objects should be stored E %‘51 %ﬁ(l)
= All allocation within single virtual address space
3 4

CSC252 - Spring 2015 1



Computer Organization

Machine Words

Machine Has “Word Size”
= Nominal size of integer-valued data, more importantly, basic unit of
internal storage (registers) and computation
= Including addresses
= Some machines use 32 bits (4 bytes) addresses
= Limits addresses to 4GB
= Too small for memory-intensive applications
= High-end systems use 64 bits (8 bytes) addresses
= Potential address space = 1.8 X 10 bytes
= X86-64 machines support 48-bit addresses: 256 Terabytes
= Machines support multiple data formats
= Fractions or multiples of word size
= Always one or multiples of bytes

1/122/2015

Word-Oriented Memory Organization

32-bit  64-bit

Words Words Bytes  Addr.
0000
= Addresses Specify Byte Locations Addr 0001
= Address of first byte in word 0000 0002
= Addresses of successive words differ Aidr 0003
by 4 (32-bit) or 8 (64-bit) Ader 0000 0004
. 0005
0004 0006
0007
0008
Adar 0009
0008 Adar 0010
= 0011
0008 0012
Adar 0013
0012 0014
0015 6

Data Representations

C Data Type Typical 32-bit Intel IA32 x86-64
1 1

char 1

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

CSC252 - Spring 2015

Byte Ordering

= How should bytes within a multi-byte word be ordered in memory?
= Big Endian (Sun, PPC Mac, Internet)
= Most significant byte has lowest address
= Little Endian (Intel x86)
= Least significant byte has lowest address
= Example
= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
[ [ JorJasfasfer] | |

Little Endian 0x100 0x101 0x102 0x103
[ | [er]a]23for] [ |




Computer Organization 1/22/2015

] L Representlng Decimal: 15213
Readlng Byte'Reversed LIStIngS Integers Binary: 0011 1011 0110 1101
Hex: 3 B 6 D
= Disassembly )
intA=15213; ; - .
= Text representation of binary machine code long int C = 15213;
= Generated by program that reads the machine code IA32, x86-64 Sun
1A32 x86-64 Sun
= Example Fragment 6D 00 ) ) 00
3B 00
Address Instruction Code Assembly Rendition 00 3B 3B 3B 00
8048365: 5b pop %ebx 00 &D 00 00 3B
8048366: 81 c3 ab 12 00 00 add  $0x12ab,%ebx 00 00 )
804836¢: 83 bb 28 00 'QO 00 00 cmpl /$0X0,0x28(%ebx) 00
. . int B =-15213;
= Deciphering Numbers : 88
= Value: 0Ox12ab 1A32, x86-64 Sun 50
= Pad to 32 bits: 0x000012ab 93 EE
= Splitinto bytes: 0000 12 ab [ FF |«
= Reverse: ab 1200 00 FF C4 \
EF 93 Two’s complement representation
9 (Covered later) 10
Representing Strings Bits, Bytes, and Integers

o char S[6] = "18243"; "
= Stringsin C ‘ = Bit-level manipulations

= Represented by array of characters -

= Each character encoded in ASCII Linux/Alpha Sun .
= Standard 7-bit encoding of characters 31 31

-
= Character “0” has code 0x30 38 38

Digit i has code 0x30+i
= String should be null-terminated 52 52
= Final character =0 34 34
= Compatibility 33 33
= Byte ordering not an issue 00 00
11 12

CSC252 - Spring 2015 3



Computer Organization

1/122/2015

Boolean Algebra

= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0

And Or

= A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1

&|o 1 1o 1
0|0 Q 0|0 1
1|0 1 111 1
Not Exclusive-Or (Xor)
= ~“A =1when A=0 = AMB = 1 when either A=1 or B=1, but not both
~l —10 1
o1 0|0
1|0 1|1

13

Boolean Algebra on Bit Vectors

Operate on Bit Vectors

= Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101

~ 01010101

01000001 01111101 00111100

10101010

14

= Representation

= g;=1ifj €EA

. 01101001 {0,3,5,6}

= 76543210

= 01010101 {0,2,4,6}

= 76543210

= Operations

= & Intersection 01000001
= | Union 01111101
= A Symmetric difference 00111100
= ~ Complement 10101010

Representing & Manipulating Sets

= Width w bit vector represents subsets of {0, ..., w—1}

{0,6}
{0,2,3,4,5,6}
{2,3,4,5}
{1,3,57}

15

Bit-Level Operations in C

= Operations &, |, ~, " Availablein C
= Apply to any basic data type

= long, int, short, char, unsigned

= View arguments as bit vectors

= Arguments applied bit-wise

Examples
~0x41 = OXBE
= ~010000012 = 101111102
~0x00 = OxFF
= ~000000002 = 111111112
0x69 & 0x55 = 0x41
= 011010012 & 010101012 = 010000012
0x69 | 0x55 = 0x7D

= 011010012/ 010101012 = 011111012

16

CSC252 - Spring 2015



Computer Organization

1/122/2015

Contrast: Logic Operations in C

= Contrast to Logical Operators
. && !
= View 0 as “False”
= Anything nonzero as “True”
= AlwaysreturnOor1
= Early termination
= Examples (char data type)
= 10x41 = 0x00
= 10x00 = 0x01
= 1l0x41 = 0x01

= 0x69 && 0x55 = 0x01
« 0x69 || 0x55 = 0x01

= p&&*p (avoids null pointer access)

17

Shift Operations

n Left Shift: x<<y Argument x | 01100010
= Shift bit-vector x left y positions << 3 00010000
= Throw away extra bits on left Log.>> 2 | 00011000

= Fill with 0s on right
= Right Shift: x >>y

= Shift bit-vector X right y positions
= Throw away extra bits on right Argument x | 10100010

= Logical shift << 3 00010000
= Fill with 0’s on left

= Arithmetic shift
= Replicate most significant bit on right

Arith. >> 2 | 00011000

Log.>> 2 | 00101000

Arith. >> 2 | 11101000

18

Bits, Bytes, and Integers

= Integers
= Representation: unsigned and signed

19

Encoding Integers

Unsigned Two’s Complement
w-1 . w-2 .
B2UX) = Y x-2' B2T(X) = —Xyu-2"7 4 X% -2
i=0 i=0
short int x = 15213;
short int y = -15213; Sign
Bit
= Cshort 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011

= Sign Bit
= For 2’s complement, most significant bit indicates sign
= 0 for nonnegative, 1 for negative
= What is the bit representation of -1?
20

CSC252 - Spring 2015



Computer Organization

1/122/2015

Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011

Weight 15213 -15213
1] 1 1] 1 1]
2| 0 (o) 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0| 1 16
32 1 32| 0 0
64 1 64 0 0
128] 0 (o) 1 128]
256 1 256 0 0
512 1 512] 0 0
1024 0 [§) 1 1024
2048 1 2048| 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0| 1 16384
-32768 0 8 1 -32768
Sum 15213 -15213

21

Numeric Ranges

= Unsigned Values

= Two’s Complement Values

= UMin = 0 = TMin = —2w-1
000...0 100...0

= UMax = 2v-1 = TMax = 2wl-1
111..1 011..1

Values for W = 16

Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767| 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 | FF FF| 11111111 11111111
0 0| 00 00| 00000000 00000000

22

Values for Different Word Sizes

W

8 16 32

64

UMax 255 65,535 4,294,967,295

18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647

9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648

-9,223,372,036,854,775,808

= Observations

= |TMin| = TMax+1
= Asymmetric range
= UMax = 2*TMax+1

23

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X) .
— = = Equivalence
0001 1 1 = Same encodings for nonnegative
0010 2 2 values
0011 3 3 = Uniqueness
0100 4 4 = Every bit pattern represents unique
0101 5 S integer value
0110 & © = Each representable integer has
0111 g U unique bit encoding
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

24

CSC252 - Spring 2015



Computer Organization 1/22/2015

i Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

25

CSC252 - Spring 2015 7



