Computer Organization

4/16/2015

Web

Kai Shen

i Web and HTTP

Web: the Internet application
for distributed publishing and
viewing of content

Client/server model

= server: hosts published
content and sends the
content upon request

= client: requests, receives, and
displays content

HTTP: the comm. protocol
supporting the web
= request/response format

PC running 4%
Explorer

running
Apache Web
server

Linux running
Firefox

URLs

Anatomy of an HTTP Transaction

Each web object managed by a server has a unique name called a

URL (Universal Resource Locator)

URL examples:

= http://www.rochester.edu:80/
= http://www.rochester.edu/
= http://www.rochester.edu

= l|dentifies an object called '/~ , managed by a Web server at
www . rochester . edu that is listening on port 80.

Include an authority component (server) and page component

unix> telnet www.rochester.edu 80 Client: open connection to server

Trying 128.151.77.39. ..

Connected to www.rochester.edu.

Escape character is "~]".
GET / HTTP/1.1
host: www.rochester.edu

HTTP/1.1 200 OK

Telnet prints 3 lines to the terminal

Client: request line

Client: required HTTP/1.1 HOST header
Client: empty line terminates headers.

Server: responds with web page

Date: Tue, 14 Apr 2015 14:38:32 GMT

Server: Apache
Transfer-Encoding: chunked
Content-Type: text/html

Lots of stuff

Connection closed by foreign host. Server: closes connection

unix>

Client: closes connection and terminates

CSC252 - Spring 2015

Computer Organization

4/16/2015

HTTP Requests

m HTTP request is a request line, followed by zero or more headers

= Request line: <method> <uri> <version>
= <version>is HTTP version of request (HTTP/1.0 or HTTP/1.1)
= <uUri>isthe full URL, or URL suffix (if the server is known).
= <method>
= GET: Retrieve content
Workhorse method (99% of requests)
= POST: Retrieve dynamic content with arguments
Arguments for dynamic content are in the request body
= OPTIONS: Get server or file attributes
= HEAD: Like GET but no data in response body
= Request headers: <header name>: <header data>

= Provide additional information to the server.

HTTP Responses

= HTTP response is a response line followed by zero or more response
headers.

= Response line: <version> <status code> <status msg>
= <version> is HTTP version of the response.
= <status code> is numeric status.
= <status msg> is corresponding English text.
= 200 OK Request was handled without error
= 301 Moved
= 403 Forbidden
= 404 Notfound
= Response headers: <header name>: <header data>
= Provide additional information about response
= Content-Type: MIME type of content in response body.
= Content-Length: Length of content in response body.

Provide alternate URL
Server lacks permission to access file
Server couldn’t find the file.

How much to receive?

= Finish on close?

= Standard
= Specify total length with content-length
= Requires that program buffers entire message

s Chunked
= Break into blocks
= Prefix each block with number of bytes (Hex coded)

Chunked Encoding Example

HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n
Server: Apache/1.3.41 (Unix)\n
Keep-Alive: timeout=15, max=100\n
Connection: Keep-Alive\n
Transfer-Encoding: chunked\n
Content-Type: text/html\n

L\r\n
|zZeN | First Chunk: 0xd75 = 3445 bytes
(<head>

-<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"
type=""text/css">

</head>

< <body id="calendar_body">

<div id="calendar~><table width="100%" border="0" cellpadding="0"
cellspacing="1" id="cal">

</body>

</html>
L\r\n
o\r\n | Second Chunk: 0 bytes (indicates last chunk)

CSC252 - Spring 2015

Computer Organization

HTTP Connection Persistency

TCP per-connection overhead:

Connection establishment
Congestion control: slow start

Non-persistent HTTP (1.0)

At most one object is sent over a TCP connection.
Pays TCP per-connection overhead for each object.

Persistent HTTP (1.1)

Multiple objects can be sent over single TCP connection between
the browser and web server.

Connection: Keep-Alive

4/16/2015

HTTP Versions

= Major differences between HTTP/1.1 and HTTP/1.0
= Connection persistency
= HTTP/1.1 supports chunked encoding
= Transfer-Encoding: chunked
= HTTP/1.1 requires HOST header
=« Host: www.hosting-company.com
= Makes it possible to host multiple websites at single Internet host

10

Complexity of Web Server/Client
Implementation

Easy to implement a web server?
= Tiny Web server described in text (226 lines of commented C code).
= ~400 lines Java Web server on the web
= Too simple for an assignment ©
= Complexity in performance, scalability, robustness, and security

= Web clients (browsers) are complex in user interactions

11

CSC252 - Spring 2015

Proxies

= A proxyis an intermediary between a client and an origin server.
= To the client, the proxy acts like a server.
= To the server, the proxy acts like a client.

1. Client request 2. Proxy request
Client (@ (

4. Proxy response

Origin
Server
3. Server response

= Can perform useful functions as requests and responses pass by

= Examples: Caching, logging, anonymization, filtering, transcoding

12

Computer Organization

4/16/2015

i Web Proxy Caching

Cache is installed and shared by users (university, company,
residential ISP)
= Goal: satisfy client requests without involving the original server.
= Client sends all HTTP
requests to proxy cache

= objectin cache: cache
returns object

server

= otherwise cache
requests object from the
original server, then
returns object to client

= Benefits

= bandwidth reduction client
Fast inexpensive
local network

Slower more
expensive
global network

= latency improvement

Cache Content Staleness

= Content providers lose direct control of cache content
= retain some control through cached content staleness

= |Is the cached page up-to-date?
= using If-modified-since HTTP header.
= removing pages that are too old.

14

13
Web Prefetching
m Prefetch a web page before client makes access
= Save latency, but not bandwidth
m Prefetching heuristics?
= Hyperlinks in the current page (assume client may click some of them)
= Predict future accesses based on past browsing history
= Where to do prefetching?
= Our study: web prefetching is not effective
= Non-prefetchable dynamic applications are increasingly dominant
= Benefits of history-based prefetching is diminished by proxy caching
15

Mining of Cache Logs

= Web cache logs contain a wealth of information
= List of who accessed what at when

= User privacy

m Aggregate statistics
= Most popular web objects, distribution of web object popularity

= General user access models (think time between accesses, pattern of
page browsing sequence, ...)

16

CSC252 - Spring 2015

Computer Organization

Assignment #5

Implement a web proxy server
Allow concurrency through multi-threading

Reap allocated resources

= Free dynamic memory, close connection sockets after use, reap
zombie children processes

Testing using telnet or some testing tools

CorlJava

17

4/16/2015

CSC252 - Spring 2015

Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

18

