Computer Organization

Concurrent Programming

1

Kai Shen

4/16/2015

Concurrent Programming is Hard!

= The human mind tends to be sequential

= Thinking about all possible sequences of events in a computer
system is at least error prone and frequently impossible

= The use of time-based ordering is often misleading
= Time isn’t always fine-grained enough to order events
= Time across machines or CPUs are not well synchronized

Concurrent Programming is Hard!

= Classical problems of concurrent programs:
= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock
= Livelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress
= Example: people always jump in front of you in line
= Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system
= Example: double assignment of a seat

CSC252 - Spring 2015

Iterative Servers

= Iterative servers process one request at a time

client 1 server client 2
connect
connect
write Jwrite
call read call read
ret read
close |-, close
........ N Wait for Client 1
accept
read
write

= |ret read

= connect() may return before the server calls accept().

Computer Organization

Iterative Server:

= Solution: use concurrent servers instead

clients at the same time

Slow Response from One Client

client 1 server client 2
CONNECT [e R
accept
User goes Call read
out to lunch Serverblocks| . connect
waiting for [}
data from write
- e
Client 1 call read
Client 2 blocks
waiting to read
from server

= Concurrent servers use multiple concurrent flows to serve multiple

4/16/2015

i What is Concurrency?

= Single Core Processor = Multi-Core Processor
= The blocking of one control = Truly running at the same
flow does not block others time
Task A Task B Task C Task A Task B Task C

Run 3 tasks on 2 CPU cores

Creating Concurrent Flows

Allow server to handle multiple clients simultaneously

1. Processes

= Each flow has its own private address space

2. Threads

= Each flow shares the same address space

3. 1/O multiplexing with select()

= The OS automatically interleaves multiple logical flows

= The OS (or not) automatically interleaves multiple logical flows

CSC252 - Spring 2015

Concurrent Servers: Multiple Processes

= Spawn separate process for each client

client 1 server client 2
CONNECTE [e .
User goes accept
out to lunch fork connect
child)/

call read

write
call read

ret read

Computer Organization 4/16/2015

Socket Connections In Process-Based

Concurrent Server Closing the Sockets
. for G3) { Fork separate process
Connection Requests connfd = accept(listenfd, .. .); for each client

if (forkQ == 0) {

LISiEeming, close(listenfd); /* Child closes its listening socket */
Server /* Real work in child */
Process) close(connfd); /* Child closes connection with client */
Client 1 Client 2 exit(0); /* Child exits */
Client 1 data | Server Server | Client 2 data 3
Process Process else {
close(connfd); /* Parent closes connected socket */
T
3
= Both parent & child have copies of listenfd and connfd after forking

= Properly close them?
What if we don’t close sockets properly?

= Resource leaking, a critical issue for long-running server.
» |s some close more important than others?

9 10
Reaping Processes for Completed Additional Issues of Process-Based
Requests Concurrent Server
signal (SIGCHLD, sigchld_handler); Fork separate process = Each process has its own memory space
for 9 £ for each client = Proorcon?
(_:onnfd = accept(listenfd, .. .);
if (forkQ == 0) { i i i i = Significant overhead for process management
close(listenfd); /* Child closes its listening socket */ .
/* Real work in child */ = Process pooling can help.
close(connfd); /* Child closes connection with client */
exit(0); /* Child exits */
3
else {
close(connfd); /* Parent closes connected socket */
3
b
sigchld_handler must reap zombie children to avoid resource leaking
1 12

CSC252 - Spring 2015 3

Computer Organization

Approach #2: Multiple Threads

= Very similar to approach #1 (multiple processes)
= But, with threads instead of processes

13

4/16/2015

View of A Process

m Process = thread + code, data, and OS kernel context

Thread Code and data

shared libraries

brk run-time heap

1
1
1
1
1
Thread context: . read/write data
Data registers 1 PC — read-only code/data
1
1
1
1
1
1
1

Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

14

A Process With Multiple Threads

= Multiple threads can be associated with a process
= Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Share common virtual address space (inc. stacks)

Shared code and data

Thread 1 (main thread) Thread 2 (peer thread)

shared libraries
‘ stack 1 ‘ stack 2
run-time heap
read/write data
read-only code/data

Thread 2 context:
Data registers Data registers
Condition codes Condition codes

SP1 0 - sP2
PCL Kernel context: PC2

VM structures
Descriptor table
brk pointer

Thread 1 context:

15

CSC252 - Spring 2015

Threads vs. Processes

How threads and processes are similar
= Each has its own logical control flow
= Each can run concurrently with others (possibly on different CPU cores)
= Each is context switched

How threads and processes are different
= Threads share code and some data
= Processes do not
= Threads are somewhat less expensive than processes
= Process control (creating and reaping) is more expensive as thread control
= Linux numbers:

~20K cycles to create and reap a process
~10K cycles (or less) to create and reap a thread

16

Computer Organization

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for thread programming
= Creating and reaping threads
» pthread_create()
« pthread_join(Q)
= Determining your thread ID
« pthread_self(Q)
= Terminating threads
« pthread_cancel ()
« pthread_exit()
= Synchronizing access to shared variables
« pthread_mutex_init
« pthread_mutex_[un]lock
« pthread_cond_init
« pthread_cond_wait

« Pthread_cond_signal
17

4/16/2015

Thread-Based Concurrent Server

for (G5) {
int *connfdp = malloc(sizeof(int));
*connfdp = accept(listenfd, .. .);
pthread_create(NULL, NULL, my_thread, connfdp);

}

void *my_thread(void *vargp) {
int connfd = *((int *)vargp);
pthread_detach(pthread_self());
free(vargp);
/* your work */

close(connfd);

return NULL;

CHECK RETURN CODES!

}

= Run thread in “detached” mode
= Runs independently of other threads, reaped when it terminates
= Pass connection file descriptor in heap space

= Note use of malloc()/free() in different contexts! Ugly!
18

Potential Form of Unintended Sharing

for (G5) {
connfd = accept(listenfd, .. .);
pthread_create(NULL, NULL, my_ thread, (void *) &connfd);

3

connfd = connfd,

Main thread stack

Peer, stack

Peer, stack

19

Threaded Execution Model

Connectjon requests
Listening

Server

. Client 1 Client2 |1 .
Client 1 data’ g SERED _,Ilent 2 data

= Multiple threads within single process
= Share state between them
= Memory
= File descriptors (don’t close a socket twice!)

20

CSC252 - Spring 2015

Computer Organization

4/16/2015

Issues With Thread-Based Servers

= Must run “detached” to avoid memory leak.
= Atany point in time, a thread is either joinable or detached.
= Joinable thread can be reaped and killed by other threads.
= must be reaped (with pthread_join) to free memory resources.
= Detached thread cannot be reaped or killed by other threads.
= resources are automatically reaped on termination.
= Default state is joinable.
= use pthread_detach(pthread_self()) to make detached.

= Must be careful to avoid unintended sharing.

21

Pros and Cons of Thread-Based Designs

+ Threads are more efficient than processes.

+ Easy to share data structures between threads
= e.g., logging information, common cache.

— Unintentional sharing can introduce subtle and hard-to-reproduce errors!

= The ease with which data can be shared is both the greatest strength and
the greatest weakness of threads.
= Hard to detect by testing
= Probability of bad race outcome very low
= But nonzero!

= Topic of “synchronization” will be discussed in next class

— Lack of fault isolation

22

i Which form of concurrency to use?

= Apache web server uses process-based concurrency.
= Many other web servers use threads
= You can try either.

23

Event-Driven Servers

= Yet some high-performance servers that do safe things use
neither processes or threads

= Event-based concurrent servers using I/0 multiplexing
= Asingle thread of control
= It repeatedly waits on an array of file descriptors (often sockets) and
processes any that has available data
= listening socket and all active connection sockets, ...
« select() systemcall
= The processing handler must not block. If need to, register an event
to wait on and then return to main loop
= Most efficient on single-core machine

24

CSC252 - Spring 2015

Computer Organization 4/16/2015

i Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

25

CSC252 - Spring 2015 7

