Computer Organization 4/21/2015

Bounded Buffer

h . . = Shared data counter
Sync ronlzatlon typedef struct { ... } item; | ‘ - |
item buffer[BUFFER_SIZE]; ou in
int in = 0, out = O;
int counter = 0;
|
Producer task Consumer task
item nextProduced; item nextConsumed;
. while (1) { whille (1) {
Kai Shen while (counter==BUFFER_SIZE) whille (counter==0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out+l) % BUFFER_SIZE;
counter--;

; /* do nothing */
buffer[in] = nextProduced;
in = (in+1) % BUFFER_SIZE;
counter++; 3}

Bounded Buffer Race Condition

= The statement "counter++" may be compiled into the following
instruction sequence:
registerl = counter;

= Race condition: a situation where
= several tasks access and manipulate shared data concurrently,
= and the final value of the shared data and/or effects on the

registerl = registerl + 1; participating tasks is nondeterministic — dependent upon the order of
counter = registerl; task execution

= The statement "counter--" may be compiled into:
register2 = counter; = To prevent race conditions, concurrent tasks must be synchronized.
register2 = register2 - 1;
counter = register2;

s The following statements must be performed atomically:

counter++;
counter--;

= Atomic operation means an operation that completes in its entirety
without interruption.

CSC252 - Spring 2015 1

Computer Organization

Synchronization Principles

= Background
= Concurrent access to shared data may result in data inconsistency.

= Maintaining data consistency requires mechanisms to ensure the
orderly execution of cooperating tasks.

= The Critical-Section Problem
= Pure software solution
= With help from the hardware

4/21/2015

The Critical-Section Problem

Problem context:
= ntasks all competing to use some shared data

= Each task has a code segment, called critical section, in which the
shared data is accessed.

Find a solution that satisfies the following:

1. Mutual Exclusion. No two tasks simultaneously in the critical section.

2. Progress. No task running outside its critical section may block other
tasks.

3. Bounded Waiting/Fairness. Given the set of concurrent tasks, a
bound must exist on the number of times that other tasks are allowed
to enter their critical sections after a task has made a request to enter
its critical section and before that request is granted.

Critical Section for Two Tasks

= Only 2 tasks, P,and P,
= General structure of task P; (other task P)
do {

entry section
exit section

} while (1);
= Tasks may share some common variables to synchronize their actions.

= Assumption: instructions are atomic and no re-ordering of instructions.

CSC252 - Spring 2015

Algorithm 1

= Shared variables:

= int turn;
initially turn = 0;
= turn==i = P, can enter its critical section

= Task P;
do {
while (turn != i) ;

turn = j;

} while (1);

= Satisfies mutual exclusion, but not progress

Computer Organization

Algorithm 2

= Shared variables:

= boolean flagl[2];
initially flag[0] = flag[l] = false;
= flag[i]==true = P, ready to enter its critical section

= Task P;
do {
flag[il = true;
while (flagljl) :
flag[i]l = false;

} while (1);

= Satisfies mutual exclusion, but may lead to deadlock.

4/21/2015

Algorithm 3

= Combine shared variables of algorithms 1 and 2.

= Task P
do {
flag[i]l = true;
turn = j;
while (flagl[j] && turn==j) ;

flagl[il = false;

} while (1);

= Meets all three requirements; solves the critical-section
problem for two tasks. = called Peterson’s algorithm.

10

Synchronization Using Special
Instruction: TSL (test-and-set)

entry section:
TSL R1, LOCK | copy lock to Rl and set lock to 1
CMP R1, #0 | was lock zero?
JNE entry section
RET |

if it wasn’t zero, lock was set, so loop
return; critical section entered

exit_section:
MOV LOCK, #0
RET

store 0 into lock

return; out of critical section

Solve the synchronization problem
Work for multiple (>2) tasks
Instruction atomicity and ordering only necessary on TSL

What if you have special instruction SWP (swap the value of a register
and a memory word)?

11

CSC252 - Spring 2015

Solving Critical Section Problem with
Busy Waiting

= In all our solutions, a task enters a loop until the entry is granted
= busy waiting (or spin waiting).

= Problems with busy waiting:
= Waste of CPU time
= If atask is switched out of CPU during critical section
= other tasks may have to waste a whole CPU quantum
= may even deadlock with strictly prioritized scheduling
= Solution
= Avoid busy wait as much as possible (yield the processor instead).

12

Computer Organization 4/21/2015

Semaphore Mutex Lock (Binary Semaphore)

= Synchronization tool that does

= Mutex lock —a semaphore with only two state: locked/unlocked
not require busy waiting.

Solving the critical section

roblem: = Semantics of the two (atomic) operations:
= Semaphore S —integer variable p : lock (mutex
. . ():
which can only be accessed via Shared data:) - __ .
two atomic operations semaphore mutex=1; wait until mutex==unlocked;
mutex=locked;
. Task Pi:
" Semar:.tlcs (roughly) of the two wait(nutex): unlock (mutex) -
operations: unlock(mutex):
N R mutex=unlocked;
wait(S) orP(S): signal (mutex);
wait until S>0;
S--;
signal(S) orV(S):
S++;
13

14

Classic Synchronization Problem:

Bounded Buffer Solution
Bounded Buffer Problem

= Shared data

buffer;
semaphore full=0;

= Shared data

buffer; semaphore empty=n;

semaphore mutex=1;

Producer task Consumer task Producer task Consumer task

while (1) { while (1) { while (1) { while (1) {

wait (full) ;
wait (mutex) ;

remove an item from buffer fo nextc;

produce an item in nextp; produce an item in nextp;

consume nextc;

cee T remove an item from buffer tonextc;
add nextp to buffer; wait (empty) ; signal (mutex) ;
) wait (mutex) ; signal (empty) ;
} add nextp to buffer; .
signal (mutex) ; consume nextc;
 Protecting the critical section for safe concurrent execution. signal (full);
¢ Synchronizing producer and consumer when buffer is empty/full. o }
}
15

16

CSC252 - Spring 2015 4

Computer Organization 4/21/2015

Dining-Philosophers Problem Dining-Philosophers Solution
Shared data:
@ @ Philosopher i (1<i<b): semaphore chopstick([5];
/O D\ while (1) { Tnitially all values are 1;
B 3 l;.C.lT'; = Philosopher i

/Q% while(1) {
think;

wait (chopstick[il);
— } wait (chopstick[(i+1l) % 51);

[i i eat;
L signal (chopstick[i]) ; >
signal (chopstick[(i+1) % 51); Deadlock?

think

¢ Eating needs both chopsticks (the left and the right one).

17 18

Synchronization Primitives in
Thread Synchronization In Practice Pthreads

= All threads share the same address space
= Mutex lock

= When only need to protect a short critical section (busy waiting may = pthread mutex_init
be OK) = pthread mutex destroy
= software/hardware spin locks = pthread mutex_ lock
= still has the risk of context switch in the middle of critical section = pthread mutex unlock
= For complex synchronization (busy waiting is not OK) = Condition variable (used in conjunction with a mutex lock)

= semaphore, mutex lock, condition variable, ...
= cost is higher (may involve operating system)

= pthread cond init

= pthread cond destroy
= pthread cond wait

= pthread cond signal

= pthread cond broadcast

19 20

CSC252 - Spring 2015 5

Computer Organization 4/21/2015

Condition Variables Process Synchronization

= To allow a task to wait, a condition variable must be declared, as = Processes naturally do not share the same address space

condition x, y; -
= Process synchronization:

= Condition variable can only be used with the operations wait = semaphore
and signal.
= The operation

x.wait();
means that the task invoking this operation is suspended until

another task invokes
x.signal();
= The x.signal operation resumes exactly one suspended task. If no
task is suspended, then the signal operation has no effect.

= Unlike semaphore, there is no counting in condition variables

22

21

CSC252 - Spring 2015

