Computer Organization

Integer Arithmetic

1

Kai Shen

1/22/2015

Integer Conversion

Signed vs. Unsigned in C

= Constants
= By default are considered to be signed integers
= Unsigned if have “U” as suffix
0U, 4294967259V
m Casting
= Explicit casting between signed & unsigned
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
= Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;

CSC252 - Spring 2015

UMax
= 2’s Comp. — Unsigned UMax—1
= Negative — Big Positive
TMax +1 Unsigned
TMax TMax Range
2’s Complement) ® o
Range -1
-2
TMin
L 2
Casting Surprises
= Expression Evaluation
 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned
= Examples for W =32: TMIN=-2,147,483,648, TMAX=2,147,483,647
= Constant, Constant, Relation Evaluation
0 ou == unsigned
1 0 < signed
1 ou > unsigned
2147483647 2147483647 > signed
2147483647V -2147483647 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed 4

Computer Organization

Security Vulnerability

1/22/2015

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024
char kbuf[KSI1ZE];

memcpy(user_dest, kbuf, len);
return len;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest,
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE :

int maxlen) {

maxlen;

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

= Real example: similar to
code found in FreeBSD's
implementation of
getpeername

Malicious Usage

#define KSIZE 1024
char kbuf[KSIZE];

int copy_from_kernel(void *user_dest,
int len = KSIZE < maxlen ? KSIZE

memcpy(user_dest, kbuf, len);
return len;

/* Kernel memory region holding user-accessible data */

/* Copy at most maxlen bytes from kernel region to user buffer */

/* Byte count len is minimum of buffer size and maxlen */
- maxlen;

int maxlen) {

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel (mybuf, -MSIZE);

= -MSIZE, when interpreted
as unsigned int by
memcpy, becomes a very
large integer

= Bit pattern is maintained
= Butreinterpreted

= Intiscasttounsigned!!

Casting Signed ¢ Unsigned: Basic Rules

= Can have unexpected effects: adding or subtracting 2%

= Expression containing signed and unsigned int

CSC252 - Spring 2015

Sign Extension

= Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value

Rule:
= Make k copies of sign bit:

-
B X' = Xyq e X1 s X,

_

w-11 X210 Xo

k copies of MSB

x [LI1

,
X' I =e<TTTT1T11

k

Computer Organization

1/22/2015

Sign Extension Example

short int x = 15213;

int ix = (int) Xx;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
iX 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

= Converting from smaller to larger integer data type
= C automatically performs sign extension

Integer Arithmetic

m Helpful for programmers to understand the semantics supported
by current system (primarily hardware, may also involve
compiler)

= Main issue: limitation of the data type size

= We do not discuss hardware implementation (leave that the
hardware engineers), but it doesn’t hurt to know some
implementation issues
= Unsigned and signed (2’s complement) integers are often
computed in the same way, so their hardware implementation can
share same components

10

Unsigned Addition

Operands: w bits U OOITT - TTT1

TV OO -« TT1T11
True sum: w+1 bits UV T T T T e 11T
Discard carry: w bits UAddy(u,V) [TTT <=e TTT1]

= Semantics: standard addition, but ignore overflowed carry
= Still commutative and associative

= Implements modular arithmetic
s = UAdd,(u,v) = u+v mod2¥

u+v u+v<2®

UAdd,,(u,v) =
({1 {u+v—2W u+v>2%

11

Two’s Complement Addition

Operands: w bits u [IIT -« TTT]

+ v [IJTT e« TTT]
True sum: w+1 bits UV T — T
Discard carry: w bits TAdd,(u,v) [T TT oo TTT]

= TAdd and UAdd have identical bit-level computation
= Signed vs. unsigned addition in C:
ints, t, u, v;
s = (int) ((unsigned) u + (unsigned) Vv);
t=u+yv
= Willgive s == t

12

CSC252 - Spring 2015

Computer Organization 1/22/2015

TAdd Overflow Negation

= Functionality True Sum = Semantics of negation (-X)
= True sum requires w+1 0111..1 -1 T = Only meaningful for signed integer
bits PosOver TAdd Result = TMIN is smallest negative integer, what is —=TMIN?
= Drop off MSB 0100..0 w1 4 011..1
« Treat remaining bits as = Observation: ~x + x == 1111.111 == -1
2’s comp. integer 0000..0 o+ 000..0 x [2]ofo]1]1]1]o[1]

+ ~x [o]1]1]ofofo[1]o]

10111 _pw-1g + 100..0
-1 [a]afafa]afa]a]a]
1000..0 _pw L NegOver
= Sowehave:~x + 1 == -x
ju+v+ 2% u+V <TMin,, (NegOver)
TAdd,, (u,v) = Ju+v TMin,, <u+v < TMax,,
[u +v— 2% TMaxy <U+V (posOver)
13 14
Unsigned Multiplication Signed Multiplication
R v LIIT --- TTT1 = Under 2’s complement, same bit-level computation as in
Operands: w bits X
*v [Tl e TTT11 unsigned case
True product: 2*w bits Y V[T T eee TTTTITT] eee TTT1]
UMult,(u,v) TTT oo 171711

Discard w bits: w bits
= Semantics: standard multiplication, but ignore high order w bits

= Implements modular arithmetic
UMult,(u,v)= u -v mod2¥

15 16

CSC252 - Spring 2015 4

Computer Organization 1/22/2015

A Practical Case Example Power-of-2 Multiply with Shift
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) { = Multiply is slow on most machines
/* i i = Operation
* Allocate buffer for ele_cnt objects, each of ele_size bytes . I K
* and copy from locations designated by ele_src = U << kgivesu 2
i : = Both signed and unsigned
void *result = malloc(ele_cnt * ele_size); u [HEE 000 [1TT11
if (result == NULL) Operands: w bits
/* malloc failed */ * 2 [O] eee JO[1IO[== 10[0]
T NULL; . .
T Pt = el True product: wk bits U2 [TTT === T T T T0[=== Iol0l
int i; . . . "
H . UMul , 2 ece eoe
for (i = 0; 1 < ele_cnt; i++) { Discard k bits: w bits TMEI:EE zk)) I | L1 10l lofol
/* Copy object i to destination */ Examples ’
memcpy(next, ele_src[i], ele_size); - p
/* Move pointer to next memory region */ = U << 3 == u=*as§a
next += ele_size; s U<< 5 -u=<<3 == u*24
3
return result;
H
17 18
Compiled Multiplication Code Division
C Function = Integer division: divide one integer over another, output an
int mul12(int x) integer
{ = Semantics:
*15 -
} LT 352225 = Like standard division
- - -)) = No overflow problem (except divide by zero)
Compiled Arithmetic Operations Explanation = Round toward zero (round down on positive side, round up on
leal (%eax,%eax,2), %eax T = X+x*2 negative side)
sall $2, %eax return t << 2; = Implementation for signed/unsigned division is very different

= Division is slower than multiply, so converting to shift etc. will
= C compiler automatically generates shift/add code when multiplying help even more
by constant

19 20

CSC252 - Spring 2015 5

Computer Organization

Unsigned Power-of-2 Divide with Shift

= Quotient of unsigned by power of 2
« u > kgives Lu /7 2¢]
= Uses logical shift

k
U [J T eee TT T eee T T] BinaryPoint
Operands:
/2% [Q[eee TOT1IOT == TOJO] /
/
Division: u/2¢ [=== Jolol T Tees Tl T=e= T T
Result: Lu/2<] [0 eee TOIOT T T eee T1]

21

1/22/2015

Signed Power-of-2 Divide with Shift

= Quotient of signed by power of 2
= X >> kgives L x / 2¢]
= Uses arithmetic shift
= Rounds wrong direction whenu < 0O

X [T eee TTT eee TT] BinaryPoint

Operands:
/2% [O] «-- TOI2]O[<= T0O[O] /
7
Division: x/2% [Jeee TTTTT eee T[T eee JT]
Result: RoundDown(X/2%) [T eee [T 11] === []
Division Computed Hex Binary

y -15213 -15213 C4 93| 11000100 10010011
y >1 -7606.5 -7607 E2 49| 11100010 01001001
y>>4 -950.8125 951] FC 49] 11111100 01001001
y >> 8 [-59.4257813 -60 FF C4] 11111111 11000100

22

Correct Power-of-2 Divide

= Quotient of negative number by power of 2
= Want [x / 2¢] (Round Toward 0)
= Compute as | (x+2k-1)/2]
= InC: (X + (I<<k)-1) >> k

23

CSC252 - Spring 2015

Integer C Puzzles

Initialization | int x = foo();
inty = bar();

unsigned ux = x;

unsigned uy =y;

Is each of the following always true?

e ux>=0

e ux>-1

* x>0&&Yy>0 = x+y>0
* ux >>3 ==ux/8

* X>>3==x/8

24

Computer Organization 1/22/2015

i Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

25

CSC252 - Spring 2015 7

