

CSC252 - Spring 2015

Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
- Value Representation
- **1/3** 0.01010101[01]...₂
- **1/5** 0.001100110011[0011]...2
- **1/10** 0.0001100110011[0011]...2

_

From Math to Computers

- Representation of fractional binary numbers on computers?
 - Think about the limited number of bits we have
 - Certain numbers bits before the binary point and certain numbers after → Fixed Point
 - limited range
 - Floating Point: numbers of bits before/after binary point may change (or floating binary point)
 - higher range, but may compromise precision (unlike integers, there is no absolute precision anyway)

6

IEEE Floating Point

- IEEE Standard 754
- Established in 1985 as uniform standard for floating point representation
 - Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

,

Floating Point Representation

Numerical form:

 $(-1)^{s} M 2^{E}$

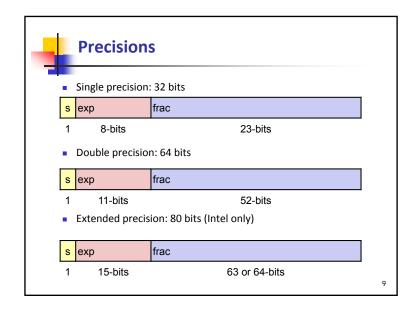
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

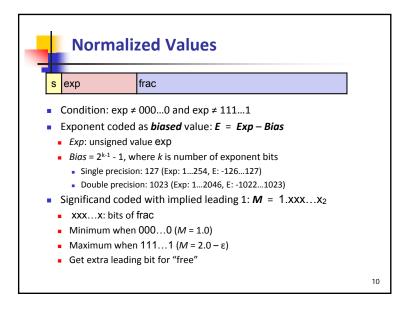
s exp frac

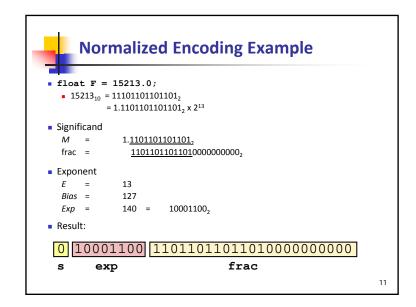
8

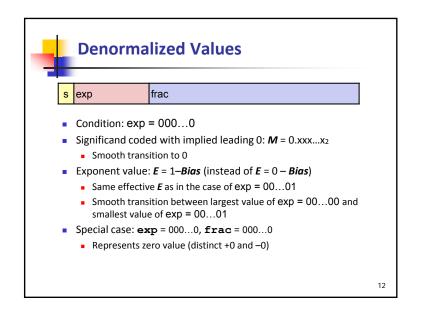
CSC252 - Spring 2015

٠,



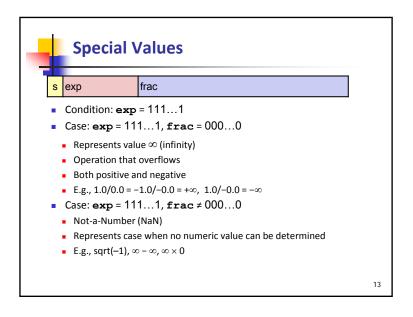


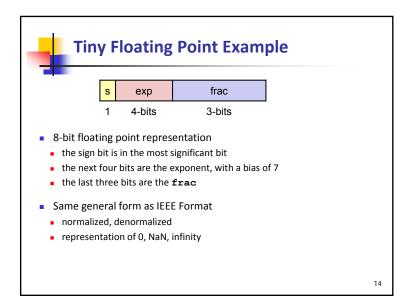


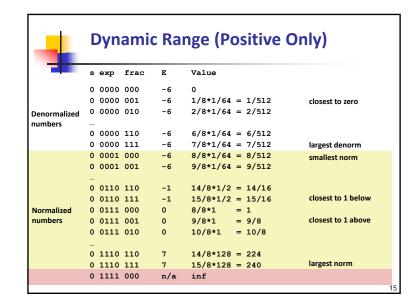


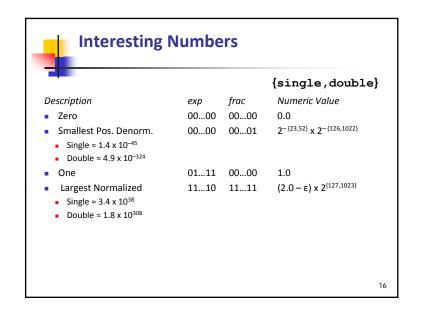
CSC252 - Spring 2015

.









CSC252 - Spring 2015

4

Special Properties of Encoding

- Floating point zero same as integer zero
- All bits = 0
- Can (almost) use unsigned integer comparison
- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

17

Floating Point Operations: Basic Idea

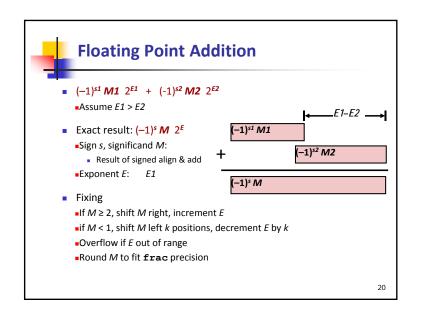
- Additions, multiplications, ...
- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

18

Rounding

- Rounding modes
- 1.50 1.40 1.60 2.50 -1.50
- 1 -1 Towards zero
- 1 Round down (-∞) 1 -2
- Round up (+∞) -1 -2
- Nearest even (default)
- Nearest even
 - Round to nearest acceptable point
 - When exactly halfway between two adjacent points, round so that least significant digit is even
- Why?
 - Statistically unbiased, even digit is easier to represent

19



CSC252 - Spring 2015

Properties of FP Add

- Commutative?
- Associative?
 - Overflow and inexactness of rounding
 - \bullet (1e20 + -1e20) + 3.14 = 3.14
 - \bullet 1e20 + (-1e20 + 3.14) = ??
- Monotonicity: a ≥ b ⇒ a+c ≥ b+c?
 - Except for infinities & NaNs

21

Floating Point Multiplication

- (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact result: (-1)^s M 2^E

Sign s: s1 ^ s2
Significand M: M1 x M2
Exponent E: E1 + E2

- Fixing
- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

22

Mathematical Properties of FP Mult

- Multiplication is commutative?
- Multiplication is associative?
- Possibility of overflow, inexactness of rounding
- Monotonicity: $a \ge b \& c \ge 0 \Rightarrow a*c \ge b*c$?
- Except for infinities & NaNs

23

Floating Point in C

- C guarantees two levels
 - float single precisiondouble double precision
- Conversions/casting
 - •Casting between int, float, and double changes bit representation
 - \bullet double/float \rightarrow int
 - · Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - \bullet int \rightarrow float
 - Will round according to rounding mode

24

CSC252 - Spring 2015

6

Disclaimer

These slides were adapted from the CMU course slides provided along with the textbook of "Computer Systems: A programmer's Perspective" by Bryant and O'Hallaron. The slides are intended for the sole purpose of teaching the computer organization course at the University of Rochester.

25

CSC252 - Spring 2015