Computer Organization 1/27/2015

i Floating Point

Floating Point Numbers = Mathematical background: fractional binary numbers

| = Representation on computers: IEEE floating point standard

= Rounding, addition, multiplication

Kai Shen
1 2
i Fractional Binary Numbers i Fractional Binary Numbers: Examples
2i
2 What is 1011.101,? m Value Representation
5&3/4 101.112
‘2‘ 287/8 10.1112
1&7/16 1.01112
— 1
’ bi‘bi—l ooe b2‘b1‘bolb-1‘b-2‘b-3 ooe b—j‘ .
12 ¥ m Observations
1/4 4 e = Each bit has half the weight of the immediately adjacent bit on the left
1/8 = Divide by 2 by shifting right; multiply by 2 by shifting left
= Numbers of form 0.111111...; are just below 1.0
= Representation 27 «1/2+1/4+1/8+..+1/21+..—> 10
= Bits to right of “binary point” represent fractional powers of 2

= Represents rational number:

L]
Y Bxat
—_r

CSC252 - Spring 2015 1

Computer Organization 1/27/2015

Representable Numbers From Math to Computers
= Limitation = Representation of fractional binary numbers on computers?
= Can only exactly represent numbers of the form x/2% = Think about the limited number of bits we have
= Other rational numbers have repeating bit representations = Certain numbers bits before the binary point and certain numbers

after - Fixed Point
= limited range

= Value Representation Floatin Point b ¢ bits before/after bi int

. 13 0.0101010101[01]...2 = Floating Point: numbers of bits before/after binary point may
change (or floating binary point)
= 1/5 0.001100110011[0011]....2 = higher range, but may compromise precision (unlike integers, there
= 1/10 0.0001100110011[0011]...2 is no absolute precision anyway)
5 6
IEEE Floating Point Floating Point Representation
= |EEE Standard 754 = Numerical form:

= Established in 1985 as uniform standard for floating point representation (-1)pm 2F
= Before that, many idiosyncratic formats = Sign bit s determines whether number is negative or positive

= Supported by all major CPUs = Significand M normally a fractional value in range [1.0,2.0).

= Exponent E weights value by power of two
= Driven by numerical concerns

= Nice standards for rounding, overflow, underflow = Encoding
= Hard to make fast in hardware = MSB s is sign bit s
= Numerical analysts predominated over hardware designers in defining = exp field encodes E (but is not equal to E)
standard

= frac field encodes M (but is not equal to M)

| s |exp frac

CSC252 - Spring 2015 2

Computer Organization

1/27/2015

Precisions

= Single precision: 32 bits

| s |exp |frac |

1 8-bits 23-bits

= Double precision: 64 bits

| s |exp |frac |

1 11-bits 52-bits
= Extended precision: 80 bits (Intel only)

| s |exp |frac |

1 15-bits 63 or 64-bits

Normalized Values

s |exp |frac

= Condition: exp # 000...0 and exp # 111...1
= Exponent coded as biased value: E = Exp — Bias
= Exp: unsigned value exp
= Bias=2%1-1, where k is number of exponent bits
= Single precision: 127 (Exp: 1...254, E: -126...127)
= Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
= Significand coded with implied leading 1: M = 1.XxX...X2
= XXX...X: bits of frac
= Minimum when 000...0 (M = 1.0)
= Maximum when 111...1 (M =2.0—-¢)
= Get extra leading bit for “free”

10

Normalized Encoding Example

s float F = 15213.0;
= 15213,, =11101101101101,
=1.1101101101101, x 2%3

= Significand
M = 1.1101101101101,
frac = 11011011011010000000000,
= Exponent
E = 13
Bias = 127
Exp = 140 = 10001100,
= Result:
[0][10001100][11011011011010000000000]
s exp frac

11

Denormalized Values

| s |exp |frac

= Condition: exp = 000...0

= Significand coded with implied leading 0: M = 0.xxx...Xx2
= Smooth transition to 0

= Exponent value: E = 1-Bias (instead of E = 0 — Bias)
= Same effective E as in the case of exp = 00...01

= Smooth transition between largest value of exp = 00...00 and
smallest value of exp = 00...01

= Special case: exp = 000...0, frac = 000...0
= Represents zero value (distinct +0 and —0)

12

CSC252 - Spring 2015

Computer Organization

S

Special Values

exp |frac

Condition: exp = 111...1
Case: exp = 111...1, frac = 000...0

= Represents value o0 (infinity)

= Operation that overflows

= Both positive and negative

= E.g.,1.0/0.0=-1.0/-0.0 = +0, 1.0/-0.0 = -0

Case: exp =111...1, £rac # 000...0

= Not-a-Number (NaN)

= Represents case when no numeric value can be determined
s E.g., sqrt(-1), oo -0, 0 x 0

1/27/2015

Tiny Floating Point Example

| s | exp | frac |

1 4-bits 3-bits

= 8-bit floating point representation
= the sign bit is in the most significant bit
= the next four bits are the exponent, with a bias of 7
= the last three bits are the frac

= Same general form as IEEE Format
= normalized, denormalized
= representation of 0, NaN, infinity

13
. og e

Dynamic Range (Positive Only)

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers

0 0000 110 -6 6/8*%1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512 largest denorm

0 0001 000 -6 8/8%1/64 = 8/512 e

0 0001 001 -6 9/8%1/64 = 9/512

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 00O 0 8/8*1 =1
numbers 0 0111 001 0 9/8%1 = 9/8 closest to 1 above

0 0111 o010 0 10/8%*1 = 10/8

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240 largest norm

0 1111 000 n/a inf

15

CSC252 - Spring 2015

14
Interesting Numbers
{single,double}

Description exp frac Numeric Value
= Zero 00..00 00...00 0.0
= Smallest Pos. Denorm. 00..00 00..01 212352} y 9~ 1126,1022}

= Single~1.4x10™%

= Double =4.9x1073%
= One 01..11 00...00 1.0
= Largest Normalized 11..10 11..11 (2.0 — €) x 211271023}

= Single =3.4x10%

= Double = 1.8 x 10308

16

Computer Organization

Special Properties of Encoding

» Floating point zero same as integer zero
= Allbits=0

= Can (almost) use unsigned integer comparison
= Must first compare sign bits
= Must consider -0 =0
= NaNs problematic
= Will be greater than any other values
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

17

1/27/2015

Floating Point Operations: Basic Idea

= Additions, multiplications, ...

= Basicidea
= First compute exact result
= Make it fit into desired precision
= Possibly overflow if exponent too large
= Possibly round to fit into frac

18

Rounding

Rounding modes
1.40 1.60 1.50 2.50 -1.50
= Towards zero 1 1 1 2 -1

= Round down (-) 1 1 1 2 -2
= Round up (+») 2 2 2 3 -1
= Nearest even (default) 1 2 2 2 -2

Nearest even
= Round to nearest acceptable point

= When exactly halfway between two adjacent points, round so that
least significant digit is even

Why?
= Statistically unbiased, even digit is easier to represent

19

CSC252 - Spring 2015

Floating Point Addition

n (1P M1 282 + (-1)2 M2 22
sAssume E1 > E2

|._E1—E2 —
= Exactresult: (-1)* M 2F 1) M1
=Sign s, significand M:
= Result of signed align & add +

sExponent E: E1 F—l)‘ v |

m Fixing
alf M 2 2, shift M right, increment E
sif M < 1, shift M left k positions, decrement E by k
=Overflow if E out of range
=Round M to fit £rac precision

20

Computer Organization 1/27/2015

Properties of FP Add Floating Point Multiplication
= Commutative? w (-1)P M1 2Er x (1) M2 2F2
Exact It: (-1)s M 2F
= Associative? - Xéc result: (1)
. . = Signs: s1Mhs2
= Overflow and inexactness of rounding Sienificand M: M1x M2
« (le20 + -1e20) + 3.14 = 3.14 = olgniticand I X
= Exponent E: E1+E2
= le20 + (-1le20 + 3.14) = ??
= Fixing

= Monotonicity: a 2 b = a+c 2 b+c?) . .
= If M 22, shift M right, increment E

= If E out of range, overflow
= Round M to fit £rac precision

= Except for infinities & NaNs

= Implementation
= Biggest chore is multiplying significands

21 22

Mathematical Properties of FP Mult Floating Point in C

= Cguarantees two levels
«float single precision
= Multiplication is associative? sdouble double precision

= Possibility of overflow, inexactness of rounding

= Multiplication is commutative?

= Conversions/casting
sCasting between int, £loat, and double changes bit
representation
sdouble/float - int
= Truncates fractional part

= Monotonicity: a 2 b & ¢ 2 0 = a*c 2 b*c?
= Except for infinities & NaNs

= Like rounding toward zero

= Not defined when out of range or NaN: Generally sets to TMin
=int - double

= Exact conversion, as long as int has < 53 bit word size
=int - float

= Will round according to rounding mode
23 24

CSC252 - Spring 2015 6

Computer Organization 1/27/2015

i Disclaimer

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at
the University of Rochester.

25

CSC252 - Spring 2015 7

