Computer Organization

Machine-Level Programming I:

Basics
il

Kai Shen

i Why do | care for machine code?

= Chances are, you'll never write programs in machine code
= Compilers are much better & more patient than you are

= But: understanding machine code is useful and important
= Implementing system software
= Compiler has machine code as target
= Operating systems do weird things (save/restore process state)
= Access special hardware features
= Processor model-specific registers
= Tuning program performance
» Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
= Creating / fighting malware
= Machine/assembly code is the language of choice!

Not A Computer Architecture Course

= This course only teaches the interaction with machine
hardware, not designing/implementing the hardware

= If you are really into the processor architecture
= Read chapter 4
= A guest lecture by Prof. Dwarkadas on Feb 19
= Take the Computer Architecture course (ECE 401)

CSC252 - Spring 2015

Intel/AMD x86 Processors

= Totally dominate laptop/desktop/server market
= Does do as well in smartphones!

= Complex instruction set computer (CISC)
= Many different instructions with many different formats

= Compared to Reduced Instruction Set Computers (RISC), an instruction
can do more but require more complex hardware implementation
(potentially slow, more chip area and power consumption)

2/5/2015

Computer Organization

Intel x86 Evolution: Milestones

Name Date Transistors MHz
= 8086 1978 29K 5-10
= First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space
= 386 1985 275K 16-33
= First 32 bit processor , referred to as 1A32
= Capable of running Unix

= Pentium 4F 2004 125M 2800-3800
= First 64-bit processor, referred to as x86-64

= Corei7 2008 731M 2667-3333
= Multicore

= Haswell today 1.4B Not faster

= Improve on core count, power reduction, not frequency increase

Evolution into 64-Bit

64-bit: support larger programs, more register space, ...
Intel attempted radical shift from IA32 to IA64
= [tanium: executes IA32 code only as legacy
= Performance disappointing
AMD stepped in with evolutionary solution
= x86-64
Intel felt obligated to focus on IA64
= Hard to admit mistake or that AMD is better
2004: Intel announces EM64T extension to 1A32
= Extended Memory 64-bit Technology
= Almost identical to x86-64!
All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Machine Programming I: Basics

m» Overview of x86 processors and architectures
= Relation of C, assembly, machine codes

m Assembly Basics: Registers, operands, move
= x86-64

CSC252 - Spring 2015

Definitions

Architecture: (also instruction set architecture: ISA) The parts of
a processor design that one needs to understand to write
assembly code.

= Including instruction set specification, registers.
= Example ISA: IA32, x86-64

Microarchitecture: Implementation of the architecture.
= Examples: cache sizes and core frequency.

2/5/2015

Computer Organization

Machine Programmer’s View

CPU

Registers
i

Condition
Codes

Memory
Addresses

Object Code

Data Program Data

Instructions OS Data

= Programmer-visible state
= PC: Program counter
= Address of next instruction
= Called “EIP” (IA32) or “RIP” (x86-64)
= Register file
= Heavily used program data
= Condition codes

= Store status information about most
recent arithmetic operation
= Used for conditional branching

Stack

= Memory
= Byte addressable array
= Code, data

= Includes stack used to support
procedures

Turning C into Machine Code

= Codeinfiles pl.c p2.c

= Compile with command: gcc —01 pl.c p2.c -0 p
= Put resulting binary in file p

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl %ebp
int t = x+y; movl %esp,%ebp
return t; movl 12(%ebp) ,%eax
} addl 8(%ebp) ,%eax

popl %ebp
ret

11

CSC252 - Spring 2015

text | C program (pl.c p2.c) |
Compiler (gcc -S)
text | Asm program (pl.s p2.s) |
Assembler (gcc or as)
binary | Object program (p1.0 p2.0) | Static libraries
Linker (gcc or 1d) =)
binary | Executable program (p)
10
Assembly Characteristics: Data Types
= “Integer” data of 1, 2, or 4 bytes
= Datavalues
= Addresses (pointers)
= Floating point data of 4, 8, or 10 bytes
= No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory
12

2/5/2015

Computer Organization 2/5/2015

Assembly Characteristics: Operations Object/Machine Code
. .)) Code for sum
= Perform arithmetic function on register or memory data = Assembler
. 0x401040 <sum>: = Translates .Sinto .0
= Transfer data between memory and register 0x55) i))
. . 0x89 = Binary encoding of each instruction
» Load daté fron; metnory Into register Oxe5 = Nearly-complete image of executable code
= Store fegister data into memory 8§jg = Missing linkages between code in different
= Transfer control 0x0c files
= Unconditional jumps to/from procedures 0x03 = Linker
= Conditional branches 8§gg = Resolves references between files
ox5dq ° Totalof 11bytes = Combines with static run-time libraries
0xc3 °* Eachinstruction » E.g., code formalloc, printf
1,2, 0r 3 bytes = Some libraries are dynamically linked
e Starts at address e .
0x401040 . L|nk|ng occurs when program begins
execution
13 14

Machine Instruction Example Disassembling Object Code

= C code

|int t = xty; Disassembled

= Add two signed integers

= Assembly 080483c4 <sum>:
. 80483c4: 55 push %ebp
Add 2 4-byte integers
’addl 8(%ebp) , %eax ‘ : v . 8 80483c5: 89 e5 mov %esp ,%ebp

P). = “Long” words in GCC parlance 80483c7: 8b 45 Oc mov oxc(%ebp) , %keax
Similar to expression: = Same instruction whether signed or 80483ca- 03 45 08 add 0x8(%ebp) , %eax

- unsigned 80483cd: 5d pop %ebp

x+=y = Operands: 80483ce: c3 ret

More precisely:

X: Register Y%eax :

- N = Disassembler

int eax; y: Memory M[%ebp+8] objdump -d p

int *ebp; t: Register Y%eax -

eax += ebp[2] Return function value in %eax = Useful tool for examining object code

= Object code = Analyzes bit pattern of series of instructions
. . = Produces approximate rendition of assembly code
0x80483ca: 03 45 08 = 3-byte instruction Can be run on either a.out (complete executable) or . 0 file
= Stored at address 0x80483ca " - P -

15 16

CSC252 - Spring 2015 4

Computer Organization

Machine Programming I: Basics

m» Overview of x86 processors and architectures

m Relation of C, assembly, machine codes

= Assembly Basics: Registers, operands, move

= x86-64

Integer Registers (IA32)

Origin
(mostly obsolete)

17
Moving Data: IA32
| Y%eax |
= Moving Data [%ecx |
mov 1 Source, Dest: | hedx |
= Operand Types | %ebx |
= Immediate: Constant integer data | %esi |
= Example: $0x400, $-533
= Like C constant, but prefixed with “$~ | Yhedi |
= Encoded with 1, 2, or 4 bytes | %esp |
= Register: One of 8 integer registers | %ebp |
= Example: %eax, %edx
« But%esp and %ebp reserved for special use
= Others may have special uses for particular instructions
= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%eax)
= Various other “address modes”
19

| Y%eax Y%ax | Y%ah | %al i accumulate
o | Y%ecx %CxX | %ch | %cl | counter
(%)
o 1
g |%edx wox [wdh | %dl | deca
2 < "
S| [tenx wbx [wbh | %bl | bese
c 1
(0]
g)
| esi wsit | |
|%edi el | | gestination
L |
| stack
|%esp %sp | | pointer
| base
|%ebp "bp | l pointer
\ Y J
16-bit virtual registers
(backwards compatibility) 18
mov | Operand Combinations
Source Dest Src,Dest C Analog
(, Reg movl $0x4,%eax temp = 0x4;
mm
Mem movl $-147,(%eax) *p = -147;

movl < Reg {Reg

Mem

\ Mem Reg

movl %eax,%edx

movl %eax, (%edx)

movl (%eax) ,%edx

temp2 = templ;
*p = temp;

temp = *p;

Cannot do memory-memory transfer with a single instruction

20

CSC252 - Spring 2015

2/5/2015

Computer Organization

Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

Mem[Reg[R]+D]
= Register R specifies start of memory region

= Displacement D(R)

= Constant displacement D specifies offset

movl 8(%ebp) ,%edx

21

Memory Addressing Example

swap:
void swap(int *xp, int *yp)
int t0 = *xp;
int tl = *yp;
*p = tl; s movl 8(%ebp), %edx
*yp = 10; movl 12(%ebp), %ecx
} movl (%edx), %ebx Body

movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx)

22

Full Memory Addressing Modes

= Most general form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement”
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except %esp (unlikely you’'d use %ebp either)
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

23

Address Computation Examples

%edx |OxF000

%ecx 0x0100

Expression Address Computation Address
0x8(%edx) Oxf000 + 0x8 0xf008
(%edx, %ecx) 0xf000 + 0x0100 0x¥100

(%edx,%ecx,4) O0xf000 + 4*0x0100 |O0xF400

0x80(, %edx, 2) 2*0xf000 + 0x80 0x1d080

24

CSC252 - Spring 2015

2/5/2015

Computer Organization

Address Computation Instruction

= leal Src, Dest
= Srcis address mode expression
= Set Dest to address denoted by expression
s Uses
= Computing addresses without a memory reference
» E.g., translationof p = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8
= Example

int mull2(int x) .
{ Converted to ASM by compiler:

return x*12;

leal (%eax,%eax,2), %eax ;T <- X+Xx*2
} sall $2, %eax sreturn t<<2

25

Understanding Swap

void swap(int *xp, int *yp) .
{ . Stack
int t0 = *xp; .)
int tl = *yp: Offset (in memory)
*xXp = tl;
*yp = 10; 12 -
¥ 8 Xp
Rtn adr
_ 0 |old %ebpf— %ebp
Register Value
%edx xp -4 |0ld %ebx[—— %esp
%ecx yp
Yhebx 0 movl 8(%ebp), %edx # edx = xp
, movl 12(%ebp), %ecx # ecx = yp
heax tl movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (tl)
movl %eax, (%edx) # *xp = tl
movl %ebx, (%ecx) # *yp = t0 2

Machine Programming I: Basics

m» Overview of x86 processors and architectures
m Relation of C, assembly, machine codes

m Assembly Basics: Registers, operands, move
= x86-64

27

Data Representations: IA32 + x86-64

= Sizes of C Objects (in Bytes)

s CData Type Generic 32-bit Intel IA32 x86-64
= unsigned 4 4 4
= int 4 4 4
= longint 4 4 8
= char 1 1 1
= short 2 2 2
= float 4 4 4
= double 8 8 8
= long double 8 10/12 10/16
= char* 4 4 8

28

CSC252 - Spring 2015

2/5/2015

Computer Organization

x86-64 Integer Registers

New 64-bit Instructions

= Long word I (4 Bytes) <> Quad word g (8 Bytes)

= New instructions:

= movl — movq
= addl — addq
= sall — salq
= etc.

30

ax heax | |%r8 shrad |
%rbx Yebx		%r9 %rod		
%rcx Y%ecx		%r10 ‘%rlOd		
%rdx	%edx		%r11	%rlld
%rsi thesi		%r12 ri2d		
%rdi hedi		%r13 ri3d		
%rsp lesp		%r14 sri4d		
%rbp	%dm		%r15 %ri5d	
= Extend existing registers. Add 8 new ones.
= Make %ebp/%rbp general purpose 29
32-bit code for swap
swap:
- — e pushl %ebp
void swap(int *xp, int *yp) movl %esp,%ebp i'et
int t0 = *xp; pushl %ebx P
int tl = *yp;
*Xp = tl; movl 8(%ebp), %edx
*yp = tO0; movl 12(%ebp), %ecx
3 movl (%edx), %ebx Body
movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx)
popl %ebx
popl %ebp Finish
ret

31

64-bit code for swap

void swap(int *xp,

{

int t0
int tl

*Xp = til;
*yp = 10;

*Xp;
*yp;

int *yp)

CSC252 - Spring 2015

Operands passed in registers

swap:

movl (%rdi), %edx
movl (%rsi), %eax
movl %eax, (%rdi)
movl %edx, (%rsi)

ret

= First (Xp) in %rdi, second (yp) in %rsi

No stack operations required

64-bit pointers, 32-bit data

Set
ot

Body

32

2/5/2015

Computer Organization

swap_1I:

void swap(long *xp, long *yp)

long t0 = *xp; movq

long tl = *yp; movq

*xp = ti; movq

*yp = t0; movq
3

ret
= 64-bit data

= Data held in registers %rax and %rdx
= Mov(q operation

64-bit code for long int swap

Set

j

rdi), %rdx
%rsi), %rax

Y%rax, (%rdi)
%rdx, (%rsi)

} Finish

Body

33

Machine Programming I: Summary

Overview of x86 processors and architectures
= Evolutionary design, backward compatibility
Relation of C, assembly, machine codes
= High-level language, machine-level code, human friendliness
Assembly basics: registers, operands, move
= Key is data location and semantics
x86-64

= More than 64-bits, more register space allows additional
optimization

34

2/5/2015

Disclaimer

the University of Rochester.

These slides were adapted from the CMU course slides provided
along with the textbook of “Computer Systems: A programmer’s
Perspective” by Bryant and O’Hallaron. The slides are intended for
the sole purpose of teaching the computer organization course at

35

CSC252 - Spring 2015

