
Operating Systems 2/21/2004

CSC 256/456 - Spring 2004 1

2/21/2004 CSC 256/456 - Spring 2004 1

Paging and Segmentation

CS 256/456
Dept. of Computer Science, University of Rochester

2/21/2004 CSC 256/456 - Spring 2004 2

Recap of the Last Class

n Running a user program
q compile ? link ? load ? execute

n Address binding
q compile-time, load-time, execution-time

n Logical vs. physical address
q address translation: memory mapping unit

n Swapping system vs. virtual memory system
q contiguous allocation for swapping systems

2/21/2004 CSC 256/456 - Spring 2004 3

Paging (non-contiguous allocation)
n Physical address space of a process can be noncontiguous;

process is allocated physical memory whenever the latter
is available.

n Divide physical memory into fixed-sized blocks called
frames (typically between 512 bytes and 8192 bytes).

n Divide logical memory into blocks of same size called
pages.

n To run a program of size n pages, need to find n free
frames and load program.

n Internal fragmentation.

2/21/2004 CSC 256/456 - Spring 2004 4

Paging: Address Translation Scheme

A logical address is
divided into:

n Page number (p) – used
as an index into a page
table which contains
base address of each
page in physical memory.

n Page offset (d) –
combined with base
address to define the
physical memory address
that is sent to the
memory.

Operating Systems 2/21/2004

CSC 256/456 - Spring 2004 2

2/21/2004 CSC 256/456 - Spring 2004 5

Load A User Program: An Example

Before loading After loading

2/21/2004 CSC 256/456 - Spring 2004 6

Implementation of Page Table

n Page table is kept in main memory (kernel or user space?).

n Hardware MMU:
q Page-table base register (PTBR) points to the page table.
q Page-table length register (PRLR) indicates size of the page

table.
n In this scheme every data/instruction access requires two

memory accesses. One for the page table and one for the
data/instruction.

n Solution:
q A special fast-lookup hardware cache called associative

memory or translation look-aside buffers (TLBs)

2/21/2004 CSC 256/456 - Spring 2004 7

Paging MMU With TLB

2/21/2004 CSC 256/456 - Spring 2004 8

Effective Access Time
n TLB Lookup = 1 ns
n Assume memory cycle time is 100 ns
n Hit ratio (α)– percentage of times that a page number is

found in the TLB.
n Effective Access Time (EAT)

EAT = 101×α + 201×(1 – α)

Operating Systems 2/21/2004

CSC 256/456 - Spring 2004 3

2/21/2004 CSC 256/456 - Spring 2004 9

Memory Protection

n How is memory protection achieved?
q protecting the page tables in the kernel memory space.

n Parts of the logical address space may not be mapped
q Valid-invalid bit attached to each entry in the page table:

n “valid” indicates that the associated page is in the process’
logical address space, and is thus a legal page.

n “invalid” indicates that the page is not in the process’ logical
address space.

q Software trap if attempting to access an invalid page.

2/21/2004 CSC 256/456 - Spring 2004 10

Page Table Structure

n Problem with a flat linear page table
q assume a page table entry is 4-byte; page size is 4KB; the

32-bit address space is 4GB large
q how big is the flat linear page table?

n Solutions:
q Hierarchical Page Tables

n break the logical page number into multiple levels
q Hashed Page Tables
q Inverted Page Tables

n Metrics:
q Space consumption and lookup speed

2/21/2004 CSC 256/456 - Spring 2004 11

Two-Level Page Table
n A logical address (on 32-bit machine with 4K page size)

is divided into:
q a page offset consisting of 12 bits.
q a page number consisting of 20 bits; further divided into:

n a 10-bit level-2 page number.
n a 10-bit level-1 page number.

n Thus, a logical address look likes:

n Address translation scheme:

page number page offset

pi p2 d

10 10 12

level-1 page table

level-2 page table

2/21/2004 CSC 256/456 - Spring 2004 12

Two-Level Page Table: An Example

level-1 page table

level-1 page table

physical memory

Operating Systems 2/21/2004

CSC 256/456 - Spring 2004 4

2/21/2004 CSC 256/456 - Spring 2004 13

Deal With 64-bit Address Space
n Two-level page tables for 64-bit address space

q more levels are needed

n Inverted page tables
q One entry for each

real page of memory.
q Entry consists of the

process id and virtual
address of the page
stored in that real
memory location.

2/21/2004 CSC 256/456 - Spring 2004 14

Hashed Page Tables
n The virtual page number is hashed into a page table. This page

table contains a chain of elements hashing to the same location.
n Virtual page numbers are compared in this chain searching for a

match. If a match is found, the corresponding physical frame is
extracted.

2/21/2004 CSC 256/456 - Spring 2004 15

Segmentation

n One-dimensional address
space with growing pieces

n At compile time, one table
may bump into another

n Segmentation:
q generate segmented

logical address at
compile time

q segmented logical
address is translated
into physical address at
execution time

q by software or
hardware?

2/21/2004 CSC 256/456 - Spring 2004 16

Example of Segmentation

Operating Systems 2/21/2004

CSC 256/456 - Spring 2004 5

2/21/2004 CSC 256/456 - Spring 2004 17

Sharing of Segments

2/21/2004 CSC 256/456 - Spring 2004 18

Segmentation & Paging – Intel 386

n Segmentation
and paging with a
two-level paging
scheme.

2/21/2004 CSC 256/456 - Spring 2004 19

Pages vs. Segmentation

2/21/2004 CSC 256/456 - Spring 2004 20

Disclaimer

n Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

