Operating Systems

Paging and Segmentation

CS 2567456
Dept. of Computer Science, University of Rochester

2/21/2004 CSC 256/456 - Spring 2004

| Recap of the L

ast Class

= Running a user program
o compile ? link ? load ? execute

= Address binding

o compile-time, load-time, execution-time

= Logical vs. physical address
o address translation: memory mapping unit

= Swapping system vs. virtual memory system
o contiguous allocation for swapping systems

2/21/2004

CSC 256/456 - Spring 2004

\Paging (non-contiguous allocation)

= Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter
is available.

= Divide physical memory into fixed-sized blocks called
frames (typically between 512 bytes and 8192 bytes).

= Divide logical memory into blocks of same size called
pages.

= To run a program of size n pages, need to find n free
frames and load program.

= Internal fragmentation.

2/21/2004 CSC 256/456 - Spring 2004

| Paging: Address Translation Scheme

A logical address is
divided into:

= Page number (p) - used
as an index into a page
table which contains
base address of each
page in physical memory.

= Page offset (d) -
combined with base
address to define the

physical memory address

that is sent to the
memory.

2/21/2004

logical
address

physical

address

10000 .. . 0000

1111111

page table

physical
memory

CSC 256/456 - Spring 2004

CSC 256/456 - Spring 2004

2/21/2004

Operating Systems

|Load A User Program: An Example

new process

(a)

free-frame list free-frame list

21 new-process page table 21

(b)

page 1

page 0

page 2

page 3

| Implementation of Page Table

= Page table is kept in main memory (kernel or user space?).

= Hardware MMU:
o Page-table base register (PTBR) points to the page table.

o Page-table length register (PRLR) indicates size of the page
table.

= In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

= Solution:

o A special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

2/21/2004 CSC 256/456 - Spring 2004

Before loading After loading
2/21/2004 CSC 256/456 - Spring 2004
logical
address
CPU o
page frame
number number
TLB hit physical
y address
f [d —»
TLB
’ {
TLB miss
f
—_— physical
memory
page table
2/21/2004 CSC 256/456 - Spring 2004

Effective Access Time

s TLB Lookup =1ns
= Assume memory cycle time is 100 ns

= Hit ratio (a)- percentage of times that a page number is
found in the TLB.

n Effective Access Time (EAT)
EAT = 101xa + 201x(1 - a)

2/21/2004 CSC 256/456 - Spring 2004

CSC 256/456 - Spring 2004

2/21/2004

Operating Systems

|Memory Protection

= How is memory protection achieved?

logical address space, and is thus a legal page.

address space.

2/21/2004 CSC 256/456 - Spring 2004

o protecting the page tables in the kernel memory space.

= Parts of the logical address space may not be mapped
o Valid-invalid bit attached to each entry in the page table:
= “valid” indicates that the associated page is in the process’

= “invalid” indicates that the page is not in the process’ logical

o Software trap if attempting to access an invalid page.

|Page Table Structure

= Problem with a flat linear page table

o assume a page table entry is 4-byte; page size is 4KB; the
32-bit address space is 4GB large

o how big is the flat linear page table?

= Solutions:
o Hierarchical Page Tables
= break the logical page number into multiple levels
o Hashed Page Tables
o Inverted Page Tables

= Metrics:
o Space consumption and lookup speed

2/21/2004 CSC 256/456 - Spring 2004 10

| Two-Level Page Table

is divided into:
o a page offset consisting of 12 bits.

= 3 10-bit level-2 page number.
= a 10-bit level-1 page number. page number

= A logical address (on 32-bit machine with 4K page size)

o a page number consisting of 20 bits; further divided into:

page offset

= Thus, a logical address look Iike‘ o ‘

P2 d
. 10
= Address translation scheme: 10 12
logical address
(e, [p.[a]
p{
v{
level-1 page table af
level-2 page table
2/21/2004 CSC 256/456 - Spring 2004 11

CSC 256/456 - Spring 2004

| Two-Level Page Table: An Example

/ E 100
<
\\ pres /

708 [~

\\
[evel-l page table 92.9 N 200

900 /><
x|

929

‘ level-1 page table ‘
E—

I:| ‘ physical memory

2/21/2004 CSC 256/456 - Spring 2004 12

2/21/2004

Operating Systems 2/21/2004

| Deal With 64-bit Address Space | Hashed Page Tables

= The virtual page number is hashed into a page table. This page
table contains a chain of elements hashing to the same location.

= Virtual page numbers are compared in this chain searching for a
match. If a match is found, the corresponding physical frame is

= Two-level page tables for 64-bit address space
o more levels are needed

extracted.
= Inverted page tables
physical
o One entry for each logical address address
real page of memory. Jogioal physical [pTd] [rTd}
X address physical
o Entry consists of the CPU e

process id and virtual
address of the page
stored in that real
memory location.

]
physical
pa] p @ s lats1'] fLI_Ltlpr T memory

hash table

2/21/2004 CSC 256/456 - Spring 2004 13 2/21/2004 CSC 256/456 - Spring 2004 14

\Segmentation | Example of Segmentation

7 ~

A) ‘Wi pdoness space e ~
= One-dimensional address — / AN
space with growing pieces /| subroutine stack
. . Call stask / \ 1400
= At compile time, one table : / 5 ——
f 115 segment
may bump into another | ; Fres ¢ \ 2400
1 symbol
rarkacrparnd Farve | | Space cumenty being segment 0 e
= Segmentation: - R | e by the pur e it | base

1000 | 1400
400 | 6300 | 3200

Sqrt segment 4

o generate segmented

sBon—o

logical address at \ 400 | 4300
compile time | Conatnct incin i \\ /’ 1100 | 3200 e
\ 1000 | 4700
o segmented logical \ / segmenttable 4300
address is translated Neegment1 - segmentz oo seament2
into physical address at -g.:,,“m:!- ~_
execution time | Symbol tabe has logical address space segment 4
o by software or e] v b i la tha 5700
hardware? | sounce texd tble
. 6300
segment 1
6700
physical memory
Slea memony)
2/21/2004 CSC 256/456 - Spring 2004 15 2/21/2004 CSC 256/456 - Spring 2004 16

CSC 256/456 - Spring 2004 4

Operating Systems

e ™,

editor

segment 0

logical memory
process P,

editor

segment 0

|Sharing of Segments

segment table
process P,

segment table

43062

editor

68348
72773

data 1

90003
data 2
98553

physical memory

| Segmentation & Paging — Intel 386

= Segmentation
and paging with a
two-level paging
scheme.

2/21/2004

logical address. selector | offset

descriptor table
N
segment descriptor [+
\I y

linear address | directory | page | oftset | page frame

physical address

page directory page table

directory entry page table entry —I
page directory
base register

CSC 256/456 - Spring 2004 18

——— process P,
logical memory
process P,
2/21/2004 CSC 256/456 - Spring 2004 17
Pages vs. Segmentation
Consideration Paging Segmentation

Need the programmer be aware No Yes

that this technique is being used?

How many linear address 1 Many

spaces are there?

Can the total address space Yes Yes

exceed the size of physical

memory?

Can procedures and data be No Yes

distinguished and separately

protected?

Can tables whose size fluctuates No Yes

be accommodated easily?

Is sharing of procedures No Yes

between users facilitated?

Why was this technique To get a large To allow programs

invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and

protection
2/21/2004 CSC 256/456 - Spring 2004 19

CSC 256/456 - Spring 2004

\ Disclaimer

= Parts of the lecture slides contain original work of
Abraham Silberschatz, Peter B. Galvin, Greg Gagne,
Andrew S. Tanenbaum, and Gary Nutt. The slides are
intended for the sole purpose of instruction of operating
systems at the University of Rochester. All copyrighted
materials belong to their original owner(s).

2/21/2004

CSC 256/456 - Spring 2004 20

2/21/2004

