
Operating Systems 4/18/2005

CSC 256/456 - Spring 2005 1

4/18/2005 CSC 256/456 - Spring 2005 1

Multiprocessor OS

CS 256/456

Dept. of Computer Science, University of Rochester

4/18/2005 CSC 256/456 - Spring 2005 2

Comparisons on OS 
Extension/Customization

Approaches
Exokernel
Downloading code into the kernel
The graybox approach
OS configuration
Virtual machine

Comparison on
flexibility
how much changes in the original OS?
overall simplicity
overhead of each customization/extension

4/18/2005 CSC 256/456 - Spring 2005 3

Multiprocessor Hardware
A computer system in which two or more CPUs share full 
access to the main memory
Each CPU might have its own cache and the coherence 
among multiple cache is maintained

Write operation by a CPU is visible to all other CPUs
writes to the same location is seen in the same order by all 
CPUs (also called write serialization)

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

4/18/2005 CSC 256/456 - Spring 2005 4

Multiprocessor Applications

Multiprogramming
Multiple regular applications running concurrently

Concurrent servers
Web servers, … …

Parallel programs
Utilizing multiple processors to complete one task
Strong synchronization



Operating Systems 4/18/2005

CSC 256/456 - Spring 2005 2

4/18/2005 CSC 256/456 - Spring 2005 5

Single-processor OS vs. Multi-processor OS

Single-processor OS
easier to support kernel synchronization – why?
easier to perform scheduling – less complex.

Multi-processor OS
OS structure
synchronization
scheduling

4/18/2005 CSC 256/456 - Spring 2005 6

Multiprocessor OS

Each CPU has its own operating system
quick to port from a single-processor OS

Disadvantages
difficult to share things (processing cycles, memory, buffer 
cache)

Bus

4/18/2005 CSC 256/456 - Spring 2005 7

Multiprocessor OS – Master/Slave

Bus

All operating system functionality goes to one CPU
no multiprocessor concurrency in the kernel

Disadvantage
OS CPU consumption may be large so the OS CPU becomes 
the bottleneck (especially in a machine with many CPUs)

4/18/2005 CSC 256/456 - Spring 2005 8

Multiprocessor OS – Shared OS

All CPUs run a single OS instance
The OS itself must handle multiprocessor synchronization

have a big kernel lock – only one processor can execute in the 
kernel at a time
support fine-grain synchronization

Bus



Operating Systems 4/18/2005

CSC 256/456 - Spring 2005 3

4/18/2005 CSC 256/456 - Spring 2005 9

Multiprocessor Kernel Synchronization
Protecting short critical region – busy waiting is OK

Disabling interrupts does not work
Software spin locks
Hardware spin locks

using TSL

entry_section:

TSL R1, LOCK | copy lock to R1 and set lock to 1

CMP R1, #0 | was lock zero?

JNE entry_section | if it wasn’t zero, lock was set, so loop

RET | return; critical section entered

exit_section:

MOV LOCK, #0 | store 0 into lock

RET | return; out of critical section

4/18/2005 CSC 256/456 - Spring 2005 10

TSL on Multiprocessor

On multiprocessor, the TSL implementation is more complex, usually 
it has to lock the memory bus

4/18/2005 CSC 256/456 - Spring 2005 11

More on TSL Locks
Every TSL is a read/write, image multiple CPUs are busy 
waiting on one block, there will be a lot of traffic on the bus

Precede each TSL lock will a trylock (basically a simple read)
only when trylock shows the lock is not locked, a TSL lock will 
be applied

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

4/18/2005 CSC 256/456 - Spring 2005 12

Spin or Yield?
Multi-processor synchronization.

A process is waiting for an event, triggered by 
another process.
Spinning wastes CPU cycles
Switching also uses up CPU cycles
Should it spin wait or yield the processor?



Operating Systems 4/18/2005

CSC 256/456 - Spring 2005 4

4/18/2005 CSC 256/456 - Spring 2005 13

Multiprocessor Scheduling
Timesharing

using a single wait queue (protected by synchronization) 
for scheduling

cache affinity
affinity-based scheduling

synchronization of parallel programs
gang scheduling

4/18/2005 CSC 256/456 - Spring 2005 14

Disclaimer

Parts of the lecture slides contain original work by 
Andrew S. Tanenbaum. The slides are intended for the 
sole purpose of instruction of operating systems at the 
University of Rochester. All copyrighted materials 
belong to their original owner(s). 


