Scalable Internet Servers and Load Balancing

Kai Shen
Dept. of Computer Science, University of Rochester

Internet Services and Servers

- Internet Services
 - Services accessible to online users through Internet.
- Services on the Internet
 - Online keyword search engine: Google.
 - Web email service: Hotmail.
 - News service: CNN.
 - Other portal services: Yahoo!, AOL, MSN.
- Scalability requirements
 - Many simultaneous user accesses; large amount of hosted data, ...
- Internet Servers
 - Computer systems that host Internet services.

Internet Services are at the Application Layer

- Normally on the end hosts, involving no routers
- Function on transport-layer protocols TCP/UDP

Search Engine as An Example: Step 1 - Crawling

- Crawling - get all these Web pages out there:
 - First retrieve some root pages;
 - Parse their content and follow hyperlinks to retrieve more pages;
 - Depth-first search or breadth-first search?
Performance Analysis for Crawling

- The key to make it run fast – relieve the performance bottleneck.
- What are the resources involved?
 - CPU processing for TCP/HTTP protocol handling and the parsing of page content
 - local disk bandwidth
 - network bandwidth to remote web sites
- Assume average page size 10KB
 - raw processing power of a single CPU
 - one thousand fetches/second ⇒ around 10MB/s
 - I/O bandwidth of a single disk
 - up to 30MB/s (disk write)
 - network bandwidth from/to the Internet
 - T1 link (1.5Mbit/s); T3 (45Mbit/s)

Search Engine as An Example:
Step 2 - Indexing

- Indexing
 - crawled raw web pages are not easy to search.
 - we index them to formats that are easy to search.
- As part of indexing, we need to give each page an ID
 - using a hash function.

Computer: Page #123 Page #357
Networks: Page #124 Page #468

Search Engine as An Example:
Step 3 - Online Search

Partitioning and Replication

Index servers
Page servers
Web server/Query handler
Firewall
Local-area network
Internet
Index servers
Page servers
Web server/Query handler
Firewall/Switch
Local-area network
Internet
Scalability, reliability
Load Balancing over Internet Servers

- Popular sites like Google or CNN receive tens or hundreds of millions of hits per day.
- A large number of replicated servers are used at these sites.
- **Key question:** how to balance client requests over these servers?

Discussions on DNS Rotation

- **Advantages**
 - Require almost no change on the existing Internet architecture

- **Problems**
 - DNS Caching
 - Rigid load balancing policy
 - can’t balance based on runtime load changes
 - slow or no adjustment in response to failures

Load Balancing on Internet Servers

Technique 1 - DNS Rotation

1. Web servers for CNN.com
2. Firewall/Internet
3. DNS server for CNN.com
4. IP address of CNN.com

Advantages

- Require almost no change on the existing Internet architecture

Problems

- DNS Caching
- Rigid load balancing policy
 - can’t balance based on runtime load changes
 - slow or no adjustment in response to failures

Technique 2 - Cooperative Offloading

1. Web servers for CNN.com
2. Firewall/Internet
3. DNS server for CNN.com
4. IP address of CNN.com
Discussions on Cooperative Offloading

- Can be combined with the DNS rotation.
- Advantages:
 - More flexible policy is possible
 - Be more responsive to runtime workload and server failures (to a certain degree)
- Problems
 - Need a lot more software
 - Longer delay

Cooperative Offloading with TCP Handoff [Pai et al. ASPLOS1998]

Load Balancing on Internet Servers
Technique 3 – Load Balancing Switch

- More About Load Balancing Switch
 - How deep do we need to look into the network protocol stack?
 - Network layer (IP)?
 - Transport layer (TCP/UDP)?
 - Application layer?
 - Load balancing policies in LB switches (Goal: transparency, plug-and-play)
 - Simple rotation
 - Least number of active requests
 - Shortest response time
Summary

- Scalable Internet servers
 - partitioning
 - replication

- Load balancing on Internet servers
 - DNS rotation
 - cooperative offloading (w. TCP handoff)
 - LB switches

- For each technique, changes required on the components:
 - DNS server??
 - Web server??
 - client??
 - switch??