
Computer Networks 10/19/2009

CSC 257/457 - Fall 2009 1

TCP

Kai Shen

10/19/2009 CSC 257/457 - Fall 2009 1

TCP: Overview

 connection-oriented:
 handshaking (exchange of control msgs) to initialize sender  handshaking (exchange of control msgs) to initialize sender,

receiver state before data exchange
 pipelined:

 multiple in-flight segments
 full duplex data:

 bi-directional data flow in one connection
 reliable data transfer:

 guaranteed arrival, no error, in order

10/19/2009 CSC 257/457 - Fall 2009 2

 flow controlled:
 sender does not overwhelm receiver

 congestion controlled:
 sender does not overwhelm the network

 nono delay or bandwidth guarantee.

TCP Segment Structure

source port # dest port #
32 bits

URG: urgent data
(generally not used)

countingsource port # dest port #
sequence number

acknowledgement number
Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab

bytes
willing to
receive

by bytes
of data
(not segments!)

10/19/2009 CSC 257/457 - Fall 2009 3

application
data

(variable length)

connection estab
(setup, teardown

commands)

Internet
checksum

Maximum Segment Size (MSS)

 MSS is the maximum TCP segment that’d fit into the link g
layer frame

 Local MSS

 Path MSS
 Try and error probing

10/19/2009 CSC 257/457 - Fall 2009 4

Computer Networks 10/19/2009

CSC 257/457 - Fall 2009 2

TCP Reliable Data Transfer

 TCP provides reliable data transfer service on top of IP’s
li bl iunreliable service

 Pipelined transmissions
 Cumulative ACKs
 When the receiver receives out-of-order segments, it

buffers them and re-ACKs the last in-order data
 Retransmit a single segment at each timeout
 The sender retransmits at timeout or receiving duplicate

ACKs

10/19/2009 CSC 257/457 - Fall 2009 5

ACKs

 Somewhere between Go-back-N and Selective Repeat,
with some additional twists.

TCP Timeout

Q: principles for setting transmission timeout value?
 too short: premature timeout and unnecessary

retransmissions
 too long: slow reaction to segment loss
 longer than normal RTT (round trip time)

 one challenge is that RTT varies

10/19/2009 CSC 257/457 - Fall 2009 6

Estimating Round Trip Time

Q: how to estimate RTT?Q

 Basic measurement: measured time from segment transmission
until ACK receipt

 Stability: RTT fluctuates, we want to avoid instability (pre-
mature reaction to short-term spikes)
 average several recent measurements, not just current RTT

10/19/2009 CSC 257/457 - Fall 2009 7

 Agility: in case things do change, we want to adjust quickly
 give more recent measurements higher weight

EWMA – Exponentially
Weighted Moving Average

 influence of past sample decreases exponentially fast

SampleRTT1 + *SampleRTT2 + 2*SampleRTT3 + … …

1 +  + 2 + … …

SampleRTT1 is RTT for the most recent data segment,
SampleRTT2 is RTT for the next recent data segment, etc.

 EstimatedRTT = *EstimatedRTTlast + (1-)*SampleRTT1

EstimatedRTT =

10/19/2009 CSC 257/457 - Fall 2009 8

last () p 1

 typical value:  = 0.875

Computer Networks 10/19/2009

CSC 257/457 - Fall 2009 3

Example RTT Estimation
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

200

250

300

RT
T

(m
ill

ise
co

nd
s)

10/19/2009 CSC 257/457 - Fall 2009 9

100

150

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

SampleRTT Estimated RTT

TCP Timeout

Setting the timeout:
 EstimtedRTT plus “safety margin”

 large variation in EstimatedRTT → larger safety margin
 we need to estimate of how much SampleRTT deviates from

EstimatedRTT (EWMA):

DevRTT = *DevRTTlast + (1-)*|SampleRTT-EstimatedRTT|

10/19/2009 CSC 257/457 - Fall 2009 10

TimeoutInterval = EstimatedRTT + 4*DevRTT

(typically,  = 0.75)

Then set timeout interval:

TCP Sender Events and
Processing

Data ready to send:
 create segment with seq # create segment with seq #
 seq # is byte-stream number of first data byte in segment
 start timer
 timeout value: we just decided it!!

Timeout:
 retransmit segment that caused timeout
 restart timer

10/19/2009 CSC 257/457 - Fall 2009 11

ACK rcvd:
 slide sender window if acknowledges previously unacked

segments
 retransmit if 3 duplicate ACKs

TCP byte-oriented seq. #’s and
ACKs

Seq. #’s:
 byte stream “number” of

Host A Host B

Userbyte stream number of
first byte in segment’s
data

ACKs:
 seq # of next byte

expected from other
side

 cumulative ACK

User
types
‘ls\n’

host ACKs
receipt

host ACKs
receipt of

‘ls\n’, echoes
back ‘a.c\n’

10/19/2009 CSC 257/457 - Fall 2009 12

cumulat ve K
 piggybacked in data

segments in the reverse
direction

receipt
of echoed
‘vi a.c\n’

time
simple telnet scenario

Computer Networks 10/19/2009

CSC 257/457 - Fall 2009 4

TCP in Action: Cumulative ACK
Host A Host B

loss
ti

m
eo

ut
X

Slide sendwind

10/19/2009 CSC 257/457 - Fall 2009 13

Cumulative ACK scenario
time

base to 120

Fast Retransmission

 Time-out period often relatively long:
l d l b f di l t k t long delay before resending lost packet

 When receiver receives out-of-order segments, it re-
ACKs the last in-order byte

 If sender receives 3 ACKs for the same data, it
supposes that segment after ACKed data was lost:
 fast retransmission: resend segment before timer

10/19/2009 CSC 257/457 - Fall 2009 14

expires, restart timer

TCP in Action: Duplicate ACKs
and Fast Retransmission

Host A Host B

loss

ti
m

eo
ut

X

10/19/2009 CSC 257/457 - Fall 2009 15

Cumulative ACK scenario
time

3 duplicate ACKs
resend 92

Outline

 segment structureg
 reliable data transfer
 flow control
 connection management

10/19/2009 CSC 257/457 - Fall 2009 16

Computer Networks 10/19/2009

CSC 257/457 - Fall 2009 5

TCP Flow Control

 receive side of TCP
connection has a receive sender does not

flow control

buffer:

 speed-matching service:

overflow receiver’s
buffer by

transmitting too much,
too fast

10/19/2009 CSC 257/457 - Fall 2009 17

 speed matching service:
matching the send rate
to the receiving app’s
drain rate app process may be slow at

reading from buffer

TCP Flow Control: how it works?

 Rcvr advertises spare room by including value of
RcvWindow in segments

 Sender limits unACKed data to RcvWindow

10/19/2009 CSC 257/457 - Fall 2009 18

 Sender limits unACKed data to RcvWindow
 guarantees receive buffer doesn’t overflow

TCP Connection Management

 Establishment:
TCP d i t bli h “ ti ” b f  TCP sender, receiver establish “connection” before
exchanging data segments

 initialize TCP variables: starting seq. #s, MSS, buffers,
flow control info (e.g. RcvWindow)

 Teardown:
 freeing up resources after mutually close

10/19/2009 CSC 257/457 - Fall 2009 19

g p y

TCP Connection Establishment

Three way handshake:

St 1 li t (ti) d
client server

Step 1: client (active open) sends
TCP SYN segment to server
 specifies initial seq #
 no data

Step 2: server (passive open) host
receives SYN, replies with
SYNACK segment

connection
request

10/19/2009 CSC 257/457 - Fall 2009 20

g
 server allocates buffers
 specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which
may contain data

Computer Networks 10/19/2009

CSC 257/457 - Fall 2009 6

TCP Connection Teardown

Closing a connection:

close socket: close(sockfd);

A B

lclose socket: close(sockfd);

Step 1: A (active closing host)
sends TCP FIN control segment
to server

Step 2: B (passive closing host)
receives FIN, replies with ACK.
Closes connection, sends FIN.

close

close

it

10/19/2009 CSC 257/457 - Fall 2009 21

Step 3: A receives FIN, replies
with ACK.

 Enters “timed wait” – resend
ACK in case it is lost

Step 4: B receives ACK.
Connection closed.

closed
ti

m
ed

 w
a

TCP State Transition Diagram
CLOSED

LISTEN

Passive open Close
Close

Active open/SYN

SYN_RCVD SYN_SENT

ESTABLISHED

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

10/19/2009 CSC 257/457 - Fall 2009 22

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1
FIN/ACK

Timeout after two
segment lifetimes

FIN/ACK
ACK

ACK

ACK

Close/FIN

CLOSED

Disclaimer

 Parts of the lecture slides contain original work of
James Kurose, Larry Peterson, and Keith Ross. The
slides are intended for the sole purpose of
instruction of computer networks at the
University of Rochester. All copyrighted materials
belong to their original owner(s).

10/19/2009 CSC 257/457 - Fall 2009 23

