More on Link Layer

Kai Shen

Recap of Last Class

- Ethernet
 - dominant link layer technology for local-area networks
 - Ethernet frame size
 - Ethernet multiple access control
 - CSMA/CD, exponential back-off
 - factors for its efficiency
 - Speed: 10Mbps, 100Mbps, 1Gbps, 10Gbps, ...

- Link-layer addresses
 - Static per-device, universally unique
 - ARP
 - Why multiple addresses at multiple layers?

Interconnecting Nodes in Local-Area Networks

- Hubs: physical-layer signal repeaters.
- Bridges: smarter, understands link-layer protocol (Ethernet).
- Switches: essentially bridges with large number of ports.

Interconnecting with Hubs

- Physical-layer repeater
 - Repeat signal on all outgoing links
 - Doesn't care whether links are busy or not
 - No buffering
- Problems:
 - Simultaneous traffic from multiple segments may collide
 - Can't interconnect links at different speeds
Bridges

- Link layer device
 - understands and participates in Ethernet
 - buffers frame, uses CSMA/CD to access link
 - traffic isolation: selectively forwards frame based on dest. address (avoid flooding all links)

How to determine to which LAN segment to forward frame?

Self Learning

- A bridge has a bridge table
 - each entry: (Dest. address, bridge interface, timestamp)
 - bridges learn which host is connected through which interface
 - when frame received, bridge "learns" location of sender: incoming LAN segment
 - records sender/location pair in bridge table

Bridge Example

- Bridge receives frame from C destined to D
 - bridge learns C is on interface 1
 - because D is not in table, bridge floods
- Another frame from C to D?
- Frame received by D, then a reply is sent back to C
 - bridge learns D is on interface 2
 - in bridge table C is on interface 1, so bridge selectively forwards frame to interface 1

Bridge Forwarding

- When to start forwarding?
 - stop and forward: frame is completely buffered before forwarded to the next hop
 - cut-through forwarding: frame forwarded from input to output port without awaiting for assembly of entire frame
 - reduction in latency
 - implication on Ethernet frame structure?
Important Bridge Features

- Isolates collision domains resulting in higher total throughput
- "Plug-and-play": no configuration necessary
- Buffering allows links of different speeds on a single bridge: 100Mbps/1Gbps interfaces
- Cut-through forwarding

Ethernet Switches

- Essentially a bridge with a large number of ports ⇒ so many ports that each host can connect to one
- After self-learning
 - A-to-A' and B-to-B' simultaneously at full link speed, no collisions
 - Ethernet but no collisions for simultaneous uses
 - How about congestion?

Ethernet Switch Scalability

- Switch allows simultaneous traffic at full link speed
 How does it scale?
- Switch architectures
 - Bus
 - Crossbar
- A switch with a large number of ports
 - High implementation complexity ⇒ costly to build

Switch Interconnection
(no enough ports on a single switch)
Network Switching at Internet Server Center

- Thousands of servers with hierarchical network switching

- Reduce congestions:
 - Network load balance across nodes
 - Place highly communicating server modules within same switch domain, or better yet, in same machines
 - Redundancy at backbone links

Summary Comparison

- Hubs
 - Little more than a physical-layer signal repeater, no traffic isolation, buffering

- Bridges
 - Understands link-layer protocol (Ethernet), supports smarter forwarding, traffic isolation
 - Supports different Ethernet speeds with buffering

- Switches
 - Essentially bridges with large number of ports
 - No collision, but congestion is possible at individual links
 - Widespread usage today!

Media Access Control in Wireless LAN -- IEEE 802.11

- Collision if 2 or more nodes transmit at same time
- Can we use CSMA/CD?
 - Hidden terminal problem
 - Carrier sense and collision detection don't work
- Repair carrier sense:
 - Carrier probing
- Repair collision detection:
 - Success acknowledgement

PPP (point-to-point protocol)

- One sender, one receiver, one link:
 - No Media Access Control
 - No need for explicit MAC addressing
 - Simpler than broadcast link

- Deployed in:
 - Dialup links over telephone lines
 - Long-haul fiber-optics links
Reliability Services

- Error detection
- Error correction or recovery
- Loss recovery
- Flow control
 - pacing between sending and receiving nodes such that the sender does not overwhelm the receiver
- In-order delivery

Link Virtualization

- What is a link?
 - physical wire
 - connection between two IP network-aware nodes
- Virtual link
 - in the case of switched Ethernet?
 - in the case of PPP modem link?
- Why virtual link?
 - more efficient
 - link up legacy networks

Link Virtualization

ATM (asynchronous transfer mode)
- a multilayer network architecture at its own
- mainly designed for supporting real-time multimedia, with connection-oriented resource reservation
- deemed as link layer protocols in Internet architecture
 → IP over ATM

Frame relay
- origins in telephony world
- Like ATM, a network architecture at its own, with connection-oriented resource reservation
- can be used to carry IP datagrams → IP over frame relay

Disclaimer

- Parts of the lecture slides contain original work of James Kurose, Larry Peterson, and Keith Ross. The slides are intended for the sole purpose of instruction of computer networks at the University of Rochester. All copyrighted materials belong to their original owner(s).