Computer Networks

10/8/2014

il

Reliable Data Transfer

Kai Shen

10/8/2014 CSC 257/457 - Fall 2014

Reliable Data Transfer

= Whatis reliable data transfer?
= guaranteed arrival
= noerror
= in order delivery

= Why is it difficult?

= unreliable underlying communication channel, which can be lossy,
error-prone, and deliver packets out of order

= Where is it used in computer networks?
= reliable transport service on top of unreliable network layer
= reliable data link service on top of unreliable physical layer

10/8/2014 CSC 257/457 - Fall 2014

Principles of Reliable Data Transfer

Characteristics of unreliable channel will determine complexity of
reliable data transfer protocol

= e.g., delay in the channel is bounded in physical layer, not so for
network layer

Other services may interact with RDT protocol
= e.g., flow control, congestion control
Here we study widely applicable RDT principles
= we don’t make assumptions about the unreliable channel
= we don’t consider interaction with other services
Later we see what RDT is like in practice
= in atransport layer protocol — TCP

10/8/2014 CSC 257/457 - Fall 2014

Outline

= Overview of reliable data transfer

m A correct protocol: stop-and-wait
= one packet at a time

= An efficient protocol: sliding window
= multiple packets simultaneously

10/8/2014 CSC 257/457 - Fall 2014

Computer Networks

Deal with Errors

m First deal with errors, later deal with packet loss.
= ACK-based solution: receiver check errors
= if correct, send back positive ACK
= otherwise, send back negative NAK
Sender Receiver

correct

correct

| What if ACK or NAK is corrupted? I

10/8/2014 CSC 257/457 - Fall 2014 5

10/8/2014

What if ACK or NAK is corrupted?

Solution 1: create special acknowledgments for ACKs/NAKs. What if they
get corrupted too??

Solution 2: treat corrupted acknowledgements as NAKs. Duplicated
packets!!

To solve duplicated packets: sequence number for each packet.
Sender Receiver

How many sequence numbers do we need here?

correct

corrupted = resend

duplicate = discard

10/8/2014 CSC 257/457 - Fall 2014

Deal with Packet Loss: Timeouts

Sender Receiver Sender Receiver
i ket #0 —
= \Pace\’ . ket #0
3 S 5
Q o
= V
b= £
=
resend —| L]
send
| | packet#0 resent et #0
S 3 duplicate = discard
£ £ A
+ F

= Early timeout (possible for transport protocol, but unlikely for data
link protocol)

= duplicated packet = sequence number.

10/8/2014 CSC 257/457 - Fall 2014 7

Deal with Duplicated ACKs

Sender Receiver

timeout

resend —

duplicate = discard

timeout

= Solution: each ACK carries sequence number.
= With timeout, NAK is not necessary any more.

10/8/2014 CSC 257/457 - Fall 2014

Computer Networks

Stop-and-Wait

Now we have a correct protocol:
Sender Receiver

packet #0

correct

Time
-

correct

= Allow one outstanding (un-ACKed) packet — stop-and-wait
= By the way, we haven’t talked about in-order delivery.

10/8/2014

Efficiency of Stop-and-Wait

sender receiver

first packet bit transmitted, t = 0 —juo--------ommmemem e
last bit transmitted, t =L/ R

first packet bit arrives

RTT —last bit arrives, send ACK

Example:
ACK arrives, send nex

packet, t =RTT+L/R E ——————————————————————————— = Packet size

L = 1KB (8kbits),
= Transmission speed

R =1 Gbps,
. _ L/R = Roundtrip prop.
efficiency = RTT+L/R delay RTT = 30ms.
= 0.027% efficiency!
10/8/2014 CSC 257/457 - Fall 2014 10

10/8/2014 CSC 257/457 - Fall 2014 9
Pipelined Protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged packets
data packet—s
(a) a stop-and-wait proteceol in operalion (b} a pipelined prot | in i
10/8/2014 CSC 257/457 - Fall 2014 11

Pipelining: Increased Efficiency

sender ~ receiver

first packet bit transmitted, t = 0 —-----------omemeeeeececeee |
last bit transmitted, t =L/ R

first packet bit arrives

last packet bit arrives, send ACK

last bit of 24 packet arrives, send ACK
last bit of 3 packet arrives, send ACK

ACK arrives, send next,
packet, t=RTT+L/R ["~ 7]

Increase utilization
by a factor of 3!

3*L/R .000024

Channel util efficiency = = = 008%
RTT+L/R 030008
10/8/2014 CSC 257/457 - Fall 2014 12

Computer Networks 10/8/2014

A pipelined protocol:
Sliding Window

= Allow multiple outstanding (un-ACKed) packets

Go-Back-N: normal operation

= Sender: “window” of up to N consecutive un-ACKed packets allowed; limit

= Upper bound on un-ACKed packets, called window send buffer space
Sender Receiver send_base nex num already usable, not
M v ack'ed yet sent
NNV TETIRDIN00NA0ND 1 seviogi] v
) window size '
£ . —t
I

= Receiver: no buffering

= Cumulative ACK — ACK with seq #n stands for ACKs all packets up to,
including seq #n

= Receiver: acknowledge in-order packet arrival

— . = Sender: if recv ACKs in send window, sliding send window
[Two variations: go-back-N, and selective repeat. |

10/8/2014 CSC 257/457 - Fall 2014 13 10/8/2014 CSC 257/457 - Fall 2014 14

Go-Back-N: deal with problems GBN in Action

sender receiver
= Sender: send pki0 — ‘o Drawback:
= Timer for each in-flight packet send pktl Sond ACKD = Resend out-of-order
. 'Pack'et with seq #r'1 timeouts: retransmit #n and all higher seq # packets send pki2 \x.('&&?‘ 's";r?é’kcm packets
in window (buffering)
sen:g pk_t%
: wal rev pkt3, discard To fix it:
= Receiver: out-of-order packet: ¥ send ACK] .)
) | . = Receiver buffering
= Discard! = dAEkﬁ = Selective
= Optional: Re-ACK packet with highest in-order seq # (sort of a NACK) rev ACK] = gﬂ%ﬁisccrd acknowledgement
L . d pkts “*\.__. sen
= alert sender something is wrong through duplicated ACKs e rev pkis, discard
pkt2 timeout el spvS

= not critical for protocol correctness; but may improve performance send pki2 —_\\{
send pktd X. rev phkt2, deliver
send pktd send A(“Kg X
send pkts rev pktd, deliver
\ send ACK3

10/8/2014 CSC 257/457 - Fall 2014 15 10/8/2014 CSC 257/457 - Fall 2014 16

Computer Networks

10/8/2014

Selective Repeat

= Receiver

= buffers out-of-order packets for eventual in-order delivery to
upper layer
= individually acknowledges all correctly received packets

= Sender
= maintains timer for each un-ACKed packet
= only resends packets whose timers expire before ACKs are

Selective Repeat: Sender, Receiver

!L Windows

send_base nexfsegnum dready wsable. not
v v ack'ed yet sent
00000 R RUEEIRORI0000000 | semtes) rotosomse
t _ window see —4
N

() sender view of sequence numbers

out of order acceptable

diready ack’ed

JO000000IREVENETINITEIND omecttone roresece
yvet received

(buffered) but | (ithin window)

received
10/8/2014 CSC 257/457 - Fall 2014 17
Selective Repeat in Action
pktD sent
W o lbrzafsseree T £kt0 rovd, delivered, ACKD sent
5 kil sent 0[Lzadlse7a9
izslsseres pktl rovd, delivered, ACKL sent
—o1z23lase 789 WX
floss)
pkt3 sent. window full
Li123l4se783 pkt3 rovd. buf fered. ACK3 sent,
n1zadsle a9
ACKD rvd, ghtd sent
freadseves pktd rcvd, buffered. ACK4 sent
ACKL rocwd. pktS sent 01|23 4656 783
01f2 3 456 7889
- pktS rovd, buffered, ACKS sent
01|23 465k 7889
L pkt2 TIMEOUT. pkt2 resent
n1[z3 486789
pkt2 rovd, pke2,.pktd,pked, pkeS
delivered, ACK2 sent
ACK3 rowd, nothing sent 012345K7889
o1[z3 457809
19

t window size—2
N
rev_base
(b) receiver view of sequence numbers
10/8/2014 CSC 257/457 - Fall 2014 18
Selective Repeat:
Sender Implementation
Sender
data from above:
= if there is available slot in window, send pkt
timeout(n):
= resend pkt n, restart timer
ACK(n):
= mark pkt n as received
= if nis smallest unACKed pkt, advance window base to next
unACKed seq # (sliding!)
10/8/2014 CSC 257/457 - Fall 2014 20

Computer Networks 10/8/2014

Selective Repeat: Selective Repeat:
Sequence Numbers at Receiver Receiver Implementation
= rcvbase is the first expected packet. Receiver
= Is it possible to see an arriving packet with sequence number of pkt N in [revbase, revbase+N-1]

rcvbase+N or greater?

= No since rcvbase is still in send window which can’t go beyond
rcvbase+N-1.

= send ACK(n)

= in-order: deliver (also deliver buffered, in-order pkts), advance
window to next not-yet-received pkt (sliding!)

Is it possible to see an arriving packet with sequence number smaller
than rcvbase? = out-of-order: buffer

= Yes. Forinstance, due to lost acknowledgement.

kt n in [rcvbase-N, revbase-1]
What is the smallest seq number receiver can possibly see? P

= All the way down to the first packet since a packet can hang inside the " ACK(n)
network for unbounded time. .
) . .) otherwise:
= What is the smallest seq number that may still be in send window? .
= ignore
= rcvbase-N.
10/8/2014 CSC 257/457 - Fall 2014 21 10/8/2014 CSC 257/457 - Fall 2014 22
Sequence Numbers Disclaimer

= Bounding of the currently relevant sequence number space? = Parts of the lecture slides contain original work of James
= We bound it at the first step of stop-and-wait when there is no packet

loss and every packet is accounted for before the protocol moves on. Kurose, Larry Peterson, and Keith Ross. The slides are

= Cannot be bounded in practice when earlier sent packet (assumed lost intended for the sole purpose of instruction of computer
by the protocol) may hang around in the network for a long time and networks at the University of Rochester. All copyrighted

then arrives suddenly. materials belong to their original owner(s).
= External (beyond the current communication session) reasons for
arbitrary sequence numbers:

= Packets belonging to earlier sessions between the same communication
hosts

= Malicious attacker injects packets

10/8/2014 CSC 257/457 - Fall 2014 23 10/8/2014 CSC 257/457 - Fall 2014 24

