Web Performance

- Web performance problems with popular content at a central site:
 - Limited bandwidth at the central site;
 - Many users are far away from the central site.

Means of Web Acceleration

- By content providers, e.g., www.yahoo.com
 - Replicated, distributed Internet sites
- By content consumers (or clients)
 - Web caching
 - Web prefetching
- By a third-party
 - Content distribution network

Replicated Internet Sites

- Content providers build a set of distributed sites on the Internet.
- DNS answers the IP address of the site close to the client.

Is DNS caching a problem?

limited scale!
Determining Nearby Content Server

- We create a “map”, indicating distances between Internet machines (or networks) and content servers
- When a DNS query arrives at authoritative DNS server:
 - server determines network location from which query originates
 - uses “map” to determine a nearby content server
- How to build the map?
 - offline pings from content servers to all network locations
 - just-in-time pings from content servers to the source
 - What if the source does not respond to pings?

A Related Question

- Scalable estimation of node-to-node relative proximity
 - A specific problem: given any node X, find a few nearby nodes in a group of 10,000 nodes \(\{N_1, \ldots, N_{10000}\}\).
 - Too costly to measure the distance from X to 10,000 nodes.
- Use a landmark L:
 - Measure the distances from \(N_1, \ldots, N_{10000}\) to L offline.
 - Given node X, we measure the distance from X to L.
 - For node N, if distance(X,L) differs significantly from distance(N,L), X and N are likely far apart.
 - If distance(X,L) is similar to distance(N,L), does it mean X and N are nearby?
 - Use multiple landmarks

Another Related Question

- How to build a map indicating the geographical location of machines or local networks?
 - User registrations
 - GPS information

Web caches (proxy server)

- Cache is installed and shared by users (university, company, residential ISP)
- Goal: satisfy client requests without involving the original server.
- User sets browser: accesses via Web cache
- Browser sends all HTTP requests to Web cache
 - object in cache: cache returns object
 - otherwise cache requests object from the original server, then returns to client

A Related Question

- Scalable estimation of node-to-node relative proximity
 - A specific problem: given any node X, find a few nearby nodes in a group of 10,000 nodes \(\{N_1, \ldots, N_{10000}\}\).
 - Too costly to measure the distance from X to 10,000 nodes.
- Use a landmark L:
 - Measure the distances from \(N_1, \ldots, N_{10000}\) to L offline.
 - Given node X, we measure the distance from X to L.
 - For node N, if distance(X,L) differs significantly from distance(N,L), X and N are likely far apart.
 - If distance(X,L) is similar to distance(N,L), does it mean X and N are nearby?
 - Use multiple landmarks

Another Related Question

- How to build a map indicating the geographical location of machines or local networks?
 - User registrations
 - GPS information
A Quantitative Study: the Base Case

Assumptions
- 1.5Mbps wide-area access link, 1Gbps local-area network
- Wide-area delay 100 milliseconds, local-area delay 100 microseconds

Performance
- Bandwidth to wide-area content – 1.5Mbps
- Average access delay = Internet delay + LAN delay = 100.1 milliseconds

Upgrade the access link BW is costly, doesn’t help the access delay.

A Quantitative Study: Web Caching

Install a Web cache
- Suppose hit rate is 50%

Performance
- Effective bandwidth to wide-area content = 3.0Mbps
- Average access delay = cache miss delay * 50% + cache hit delay * 50%
 = 100.2 * 50% + 0.1 * 50%
 = 50.15 milliseconds

Not only higher bandwidth without upgrading access link, but also shorter access delay.

Cooperating Web Caching

- Caching cooperation
 - Several caches (often nearby) cooperate with each other
 - Benefits: more cache hits; less load on original servers
- Probing all caches at each access is too costly
 - Challenge: knowing (roughly) each other’s cache content
 - Each cache periodically broadcast its content to other caches

Cache Content Staleness

- Content providers lose direct control of cache content
 - Retain some control through cached content staleness
- Is the cached page up-to-date?
 - Using If-Modified-Since HTTP header.
 - Removing pages that are too old.
Mining of Cache Logs
- Web cache logs contain a wealth of information
 - List of who accessed what at when
 - Mine to learn useful statistics
 - Most popular web objects, distribution of web object popularity
 - General user access models (think time between accesses, pattern of page browsing sequence, ...)
 - ...
- User privacy

Web Prefetching
- Prefetch a web page before client makes access
 - Reduce latency, but not bandwidth
- Prefetching heuristics?
 - Hyperlinks in the current page (assume client may click some of them)
 - Predict future accesses based on past browsing history
- Benefit vs. cost

Content Distribution Network
- Motivation:
 - Limited scale for replication by content providers
 - Lose control of content by caching
- Content distribution network:
 - Hundreds of CDN servers throughout Internet
 - Content providers' content replicated on CDN servers
- Goals:
 - Transparent to clients
 - Content providers retain primary control

CDN in Action
- HTTP request for www.yahoo.com with embedded image
- CDN company
 - Replicates content at CDN servers
 - Uses its authoritative DNS server to redirect requests to a nearby CDN server
- Content provider
 - www.yahoo.com
Summary

Several means:
- By content providers - replicated, distributed Internet sites
- By content consumers (or clients) - Web caching, prefetching
- By a third-party - content distribution network

Differentiate them on the following:
- Scalability
- Content staleness
- Transparency to clients
- Reliance on the Domain Name System