

Web Search Engine as An Example: Step 1 – Crawling

- Crawling get all these Web pages out there:
 - First retrieve some root pages;
 - Parse their content and follow hyperlinks to retrieve more pages;
 - Repeat the last step.
- There are many choices at each step of crawling
 - Depth-first search vs. breadth-first search?
 - Hyperlink with high likelihood pointing to a high-quality page?
 - High in-links
 - Pointed to from high-quality pages
 - Spam identification and avoidance
 -

11/12/2014

CSC 257/457 - Fall 2014

3

Performance Analysis for Crawling

- What are the resources involved?
 - CPU processing for TCP/HTTP protocol handling and the parsing of page content
 - writing to disk storage
 - network bandwidth to remote web sites
- Assume average page size 10KB
 - raw processing power of a single CPU
 - 1000 pages/sec
 - I/O to a single disk
 - 100 seeks/sec ⇒ up to 100 pages/sec
 - network bandwidth from/to the Internet
 - T1 link (1.5Mbit/s) ⇒ 12 pages/sec
 - T3 link (45Mbit/s) ⇒ 360 pages/sec

11/12/2014

CSC 257/457 - Fall 2014

Load Balancing over Internet Servers

- Popular sites like Google or Facebook receive tens or hundreds of millions of hits per day.
- A large number of replicated servers are used at these sites.
- <u>Key question:</u> how to balance client requests over these servers?
- Goals:
 - Performance
 - Ease of deployment

11/12/2014

CSC 257/457 - Fall 2014

Load Balancing on Internet Servers
Technique 1 - DNS Rotation

128.111.1.2

IP address of Facebook.com

INS server for Facebook.com

11/12/2014

CSC 257/457 - Fall 2014

10

Discussions on DNS Rotation

- Advantages
 - Require almost no change on the existing Internet architecture
- Problems
 - DNS Caching
 - Rigid load balancing policy
 - can't balance based on runtime load changes
 - slow or no adjustment in response to failures

11/12/2014

CSC 257/457 - Fall 2014

11

Discussions on Cooperative Offloading

- Can be combined with the DNS rotation.
- Advantages:
 - More flexible policy is possible
 - Be more responsive to runtime workload and server failures (to a certain degree)
- Problems:
 - Need software changes on servers
 - Longer delay

11/12/2014

CSC 257/457 - Fall 2014

13

15

TCP Handoff vs. Cooperative Offloading

- Delays
 - Improvement over cooperative offloading but not perfect
- Software changes on the servers
 - Not perfect but improvement over cooperative offloading

11/12/2014

CSC 257/457 - Fall 2014

More About Load Balancing Router

Load balancing policies in LB routers (Goal: transparency, plugand-play)

- Simple rotation
- Least number of active connections
- Shortest response time

How deep do we look into the network protocol stack?

- Network layer (IP)?
- Transport layer (TCP/UDP)?
- Application layer?

11/12/2014

CSC 257/457 - Fall 2014

17

Summary

- Scalable Internet servers
 - partitioning
 - replication
- Load balancing for Internet servers
 - DNS rotation
 - Cooperative offloading (w. TCP handoff)
 - Load balancing router
- Changes required on the components:
 - DNS server??
 - Web server??
 - Client??
 - Router??

11/12/2014 CS

CSC 257/457 - Fall 2014 18