# Web Search Engine as An Example: Step 1 – Crawling - Crawling get all these Web pages out there: - First retrieve some root pages; - Parse their content and follow hyperlinks to retrieve more pages; - Repeat the last step. - There are many choices at each step of crawling - Depth-first search vs. breadth-first search? - Hyperlink with high likelihood pointing to a high-quality page? - High in-links - Pointed to from high-quality pages - Spam identification and avoidance - ... ... 11/12/2014 CSC 257/457 - Fall 2014 3 ### **Performance Analysis for Crawling** - What are the resources involved? - CPU processing for TCP/HTTP protocol handling and the parsing of page content - writing to disk storage - network bandwidth to remote web sites - Assume average page size 10KB - raw processing power of a single CPU - 1000 pages/sec - I/O to a single disk - 100 seeks/sec ⇒ up to 100 pages/sec - network bandwidth from/to the Internet - T1 link (1.5Mbit/s) ⇒ 12 pages/sec - T3 link (45Mbit/s) ⇒ 360 pages/sec 11/12/2014 CSC 257/457 - Fall 2014 ### **Load Balancing over Internet Servers** - Popular sites like Google or Facebook receive tens or hundreds of millions of hits per day. - A large number of replicated servers are used at these sites. - <u>Key question:</u> how to balance client requests over these servers? - Goals: - Performance - Ease of deployment 11/12/2014 CSC 257/457 - Fall 2014 Load Balancing on Internet Servers Technique 1 - DNS Rotation 128.111.1.2 IP address of Facebook.com INS server for Facebook.com 11/12/2014 CSC 257/457 - Fall 2014 10 #### **Discussions on DNS Rotation** - Advantages - Require almost no change on the existing Internet architecture - Problems - DNS Caching - Rigid load balancing policy - can't balance based on runtime load changes - slow or no adjustment in response to failures 11/12/2014 CSC 257/457 - Fall 2014 11 # **Discussions on Cooperative Offloading** - Can be combined with the DNS rotation. - Advantages: - More flexible policy is possible - Be more responsive to runtime workload and server failures (to a certain degree) - Problems: - Need software changes on servers - Longer delay 11/12/2014 CSC 257/457 - Fall 2014 13 15 ## **TCP Handoff vs. Cooperative Offloading** - Delays - Improvement over cooperative offloading but not perfect - Software changes on the servers - Not perfect but improvement over cooperative offloading 11/12/2014 CSC 257/457 - Fall 2014 ## **More About Load Balancing Router** Load balancing policies in LB routers (Goal: transparency, plugand-play) - Simple rotation - Least number of active connections - Shortest response time How deep do we look into the network protocol stack? - Network layer (IP)? - Transport layer (TCP/UDP)? - Application layer? 11/12/2014 CSC 257/457 - Fall 2014 17 ## **Summary** - Scalable Internet servers - partitioning - replication - Load balancing for Internet servers - DNS rotation - Cooperative offloading (w. TCP handoff) - Load balancing router - Changes required on the components: - DNS server?? - Web server?? - Client?? - Router?? 11/12/2014 CS CSC 257/457 - Fall 2014 18