Wireless Communication Links

Kai Shen

Types of Wireless Links

- IEEE 802.11 wireless LAN (WiFi)
 - Range up to 100 meters; speed up to 54Mbps
 - Intend to function as Ethernet without wires
 - Longer range (tens of kilometers) in point-to-point mode

- IEEE 802.15 Bluetooth
 - Shorter range (~10 meters); slower speed (up to 3Mbps)
 - But less power; easier setup
 - Appropriate for simple appliances: phone, game console

- Cellular wireless access, IEEE 802.16 WiMAX
 - Longer distance, but typically lower rate than WiFi

Wireless Media Access Control

- Collision if 2 or more nodes transmit at same time
- Can we use CSMA/CD?
 - hidden terminal problem, carrier sense and collision detection don’t work
- Repair collision detection:
 - add acknowledgement

802.11 Media Access Control

- **802.11 sender**
 - If sense channel idle for DIFS (distributed inter-frame space), then transmit entire frame (no collision detection)
 - If sense channel busy, then wait for it become idle and then backoff with random delay (collision avoidance)

- **802.11 receiver**
 - If received OK; return ACK after SIFS (short inter-frame space)
Inter-Frame Spacing

- Short inter-frame spacing:
 - Give transmitter time to switch to receive mode and get ready to decode

- Distributed inter-frame spacing:
 - DIFS>SIFS
 - Higher priority for ACK than data
 - Why?

Better Collision Avoidance through Carrier Probing

- Sender transmits short RTS (request to send) packet:
 - Indicates transmission and its duration

- Receiver replies with short CTS (clear to send) packet:
 - Notifying (possibly hidden) nodes

- Nodes hearing either RTS or CTS will defer access

- Collision of RTS/CTS?
 - Collision leads to less channel time loss with short RTS/CTS

802.11 Media Access Control

- CSMA/CA (Collision Avoidance)
- Repair collision detection:
 - Add acknowledgement

- Repair insufficient carrier sense:
 - Carrier probing

- Inter-frame spacing
 - Prioritize different types of frames

802.11 Sub-standards

- 802.11b
 - Up to 11Mbps; frequency band 2.4-2.85 GHz

- 802.11a
 - Up to 54Mbps; frequency band 5.1-5.8 GHz – shorter range or higher power consumption

- 802.11g
 - Up to 54Mbps; frequency band 2.4-2.85 GHz

- 802.11n
 - Up to 300Mbps, both frequency bands
Power and Range
- Power is of paramount importance in wireless devices
- Many devices are on battery power
- Power usage is directly related to range
- Friis transmission equation:
 \[\frac{P_r}{P_t} = G_rG_t \left(\frac{\lambda}{4\pi R} \right)^2 \]
 - \(P_r \) and \(P_t \) are received power and transmission power
 - \(G_r \) and \(G_t \) are antenna gains at receiving and transmission sides
 - \(R \) is the range
 - \(\lambda \) is the signal wavelength
 \(\Rightarrow \) Quadratic relation between transmission power and range

Wireless Channel
- 802.11 operates in specific frequency band
- at 2.4GHz band: 11 channels (5MHz sep.) centered at:
 - 2.412GHz (channel 1)
 - 2.417GHz (channel 2)
 -
 - 2.462GHz (channel 11)
- Each channel operates at a width of 22MHz (11MHz on each side of the center)
 - How many interference-free channels are there?
 - Channel 1 interferes with channels 2/3/4/5, but not 6

Power/Range-to-Signal Frequency
- Friis transmission equation:
 \[\frac{P_r}{P_t} = G_rG_t \left(\frac{\lambda}{4\pi R} \right)^2 \]
 - \(P_r \) and \(P_t \) are received power and transmission power
 - \(\lambda \) is the signal wavelength
- Wavelength relates directly to signal frequency
 - What relation?
 - assume electro-magnetic signal at speed of light
 - 2.4GHz \(\Rightarrow \) 12.5cm; 5GHz \(\Rightarrow \) 6cm
 - 5GHz signals require more than four times transmission power, or reaches less than half of the range

Utilization of Multiple Channels
- Utilization of multiple channels reduce interference
- In an infrastructured wireless network
 - Multiple access points (at different channels) can be put near each other without interference
 \(\Rightarrow \) good coverage and strong signal strength

http://en.wikipedia.org/wiki/File:2.4_GHz_Wi-Fi_channels_%28802.11b,g_WLAN%29.svg
A Case Study

- Channel usage at 6th floor CSB:
 - Three department APs (channels 1/6/11); three university APs (channels 1/6/11)
- Outside this classroom (measurement by Amal Fahad):
 - CS, channel 1, power 0.000020uw
 - CS, channel 6, power 0.000016uw
 - CS, channel 11, power 1.3uw
 - UR, channel 1, power 0.0040uw
 - UR, channel 6, power 0.000020uw
 - UR, channel 11, power 0.00032uw
- Outside 703, strong power from two channel-6 APs

Channel Hopping in Ad Hoc Networks

- Use multiple channels in a wireless ad hoc network
- Problem: network partitions, one at each channel
- Nodes dynamically hop between multiple channels
- Challenge: coordinate sender/receiver at same channel

- [Bahl et al. 2004]
- Each node maintains a channel hopping schedule; nodes learn each other’s schedule
- A sender adjusts its channel to match receiver
- Issues: What if the receiver wants to send to somebody else and has changed its channel? How about broadcast?

Partially Overlapped Channels

- [Mishra et al. 2006]
- More channels if we allow partial interference
 - Channels 1 and 6 are interference-free
 - Channels 1 and 4 have partial interference
- I-factor: amount of overlap between two channels
- Measurement: P_i/P_j
 - Given a signal sent at channel j, P_i is the received power at channel j, P_j is the received at channel i.
 - I-factor = 0.1 for 3-channel separation
- Range:
 - range ratio = 0.32 for 3-channel separation
 - If same channel signal disappears into noise at 100M, then 32M distance is enough for 3-channel separation

Power/Range-to-Antenna Gain

- Friis transmission equation:
 $$ \frac{P_r}{P_t} = G_r G_t \left(\frac{\lambda}{4\pi R} \right)^2 $$
 - P_r and P_t are received power and transmission power
 - G_r and G_t are antenna gains at receiving and transmission sides
- Antenna gain [wikipedia] – the ratio between:
 - the radiation intensity of an antenna in a given direction
 - the intensity that would be produced by a hypothetical ideal antenna that radiates equally in all directions
- Point-to-point WiFi can go very long distance (several kms or more)
A Case Deployment

![Image of deployment setup]

Long-Distance Point-to-Point WiFi

- Particularly well suited for under-developed, rural areas
 - Low-cost WiFi equipment
 - Use unlicensed frequency spectrum and require no base stations (unlike cellular networks)
- [Raman and Chebrolu 2005/2007]
 - Wireless mesh networks formed over long-distance WiFi in rural India

 ![Network diagram]

- Little inter-node interference
- Mixed send/receive over multiple links at a node causes unacceptable interference
- New wireless MAC protocol (2P): coordination to prevent mixed send/receive

Long-Distance Point-to-Point WiFi

[Patra et al 2007]

- Long latency over long distance \Rightarrow transmit/acknowledge turns into inefficient stop-and-wait
 - Solution: bulk transmissions with a single acknowledgement
- High loss rate due to external WiFi interference (long-distance WiFi interfere with regular short-distance WiFi near receiver)
 - Solution: repeated retransmission or redundancy coding

Disclaimer

- Parts of the lecture slides contain original work of James Kurose, Larry Peterson, and Keith Ross. The slides are intended for the sole purpose of instruction of computer networks at the University of Rochester. All copyrighted materials belong to their original owner(s).