

Multiple Access Protocol

Multiple access protocol:

- distributed algorithm that determines how nodes share channel, i.e., determine when nodes can transmit
- communication about channel sharing must use channel itself!

Objectives:

- Performance for a multiple access channel of rate R bps:
 - when one node wants to transmit, it can send at rate R
 - when M nodes want to transmit, each can send at average rate R/M
- Robustness
 - no special node to coordinate transmissions
 - no synchronized clocks

9/10/2014

CSC 257/457 - Fall 2014

5

Types of Multiple Access Protocols

Three broad classes:

- Channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- Random access
 - channel not divided, allow collisions
 - "recover" from collisions
- Centrally controlled/coordinated
 - centrally coordinate shared access to avoid collisions

9/10/2014 CSC 257/457 - Fall 2014

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

9/10/2014

CSC 257/457 - Fall 2014

4

Channel Partitioning MAC protocols:

FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, freq. bands 2,5,6 idle

9/10/2014

CSC 257/457 - Fall 2014

Slotted ALOHA (Abramson)

Assumptions

- all frames same size
- time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots (nodes are synchronized!)
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation

- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with probability p until success
- why not retransmit right away?

9/10/2014

CSC 257/457 - Fall 2014

13

