1. **Distributed Search I: Napster (central index)**
 - Napster central database
 - Kai, Michael, Sandhya
 - Napster is a centralized index, distributed document repository.

2. **Distributed Search II: Gnutella (query flooding)**
 - Who has great-song.mp3?
 - I do, I do, I do
 - Fully distributed, too many messages.

3. **Distributed Search III: Random walk**
 - Who has great-song.mp3?
 - I do
 - Slow and incomplete!!
Distributed Search IV: Object-addressable network

```
Here is great-song.mp3, store it somewhere.

Can I have great-song.mp3?
```

- "great-song.mp3" is deterministically hashed into location "L"
- every node forwards each query to a neighbor heuristically closer to "L"

How does routing work?

```
Scalable Object-addressable Network
```

```
Content-addressable net:
- each node owns a region in a virtual 2-D space
- "great-song.mp3" is hashed into a virtual location "L" (1.3, 2.4)
- every node forwards each query to a neighbor heuristically closer to "L"
```

Analysis

Content-addressable network [Ratnasamy et al. 2001]:
- each node owns a region in a virtual 2-D space
- each object is hashed into a virtual location "L"
- every node forwards each query to a neighbor heuristically closer to "L"

Questions:
- Space consumption? Lookup cost for a network of N nodes?
 - 4 links per node; $O(N^{1/2})$
- Can the lookup cost be improved?
- Can we take into account the actual link latency?

Chord [Stoica et al. 2001]

- Each object is mapped to the first node in the clockwise direction on the ring.
- Every node maintains links to
 - the node half-way in the circular ID space
 - the node a quarter-way across the circular ID space
 - ...
- Space consumption? Lookup cost for a network of N nodes?
Distributed Hashtables

- Content-addressable network (CAN) [Ratnasamy et al. 2001] and Chord [Stoica et al. 2001] are also called scalable distributed hash tables (DHTs).
- There are other scalable DHT protocols.

Geographic Location-based Routing

- Bunch of wireless sensors (not mobile)
- Each is identified by its geographic location (longitude, latitude)
- Routing – a packet is routed to a neighbor with shortest geographic distance to the destination
- **Con**
 - May not always find valid path
- **Pro**
 - Very simple, no maintenance

Peer-to-peer Networks

- Peer-to-peer networks: distributed systems of no hierarchy – each node is a peer of any other in terms of equal functionality
- Fundamental advantage of p2p networks
 - better scalability?
 - no performance bottleneck
 - better robustness?
 - no single point of failures; more tolerant to intentional attacks

More on Scalability & Robustness

- **Scalability**: able to support large number of nodes
 - cost of each operation is below linear-scaling – goes up slowly when the system size increases: O(n) is terrible, O(n^{1/2}) is OK, O(log n) is good.
 - space requirement at each node is below linear-scaling.
 - Gnutella? Random walk? CAN? Chord?
- **Robustness**: complexity of repair mechanism is a very important issue
 - Gnutella? Random walk? CAN? Chord?
Where are we now?

- Several approaches for searching large, distributed systems:
 - central index
 - query flooding
 - random walk
 - hash + heuristics-based routing (DHT)

- Concept of peer-to-peer networks.

- Additional p2p services, built on distributed search
 - DNS
 - p2p file sharing
 - p2p keyword search

P2P DNS

- DNS running on scalable DHT like Chord or CAN
 - Scalable and robust
 - Accesses aren't always local

- A hybrid approach
 - Retain local DNS server and caching
 - Support search of destination authoritative server using scalable DHT
 → no need for root servers

P2P Sharing of Large Files – BitTorrent

- Downloading large files is slow and unreliable
 - Chop a large file into pieces and try to download each piece

- How to find who has each piece of the file?
 - Distributed search: Gnutella, Chord, CAN, ...

- Downloading approach:
 - Rarest-first → high chance of completion
 - Multiple TCP connections for downloading

Keyword Search

- User inputs a few keywords, the system returns a list of documents matching the keywords – Google

 - Google maintains a central search index:
 - a search index contains a list of all searchable words, each of which contains a list of documents relevant to the word
 - intersection of document lists for multiple-word queries

 - Java: Page #123 Page #157
 - Sun: Page #157 Page #468
 -
Peer-to-peer Keyword Search

Solution 1: Split based on keywords

Split the index database to many pieces based on **keywords** and distribute them to many nodes in the network.

Central index - Google

Distributed index

Weakness: transferring large index for multiple-word queries.

Solution 2: Split based on documents

Split the index database to many pieces based on **documents** and distribute them to many nodes.

Central index - Google

UR

Joe's Web site

Weakness: too many sites to visit for each query.