Scalable Internet Services and Load Balancing

Kai Shen

Internet Services
- Internet brings ubiquitous connection
 - Internet-based applications/services accessible to online users through Internet
 - Applications can be designed and launched quickly and immediately open to many many potential users
- Trends:
 - Centralization of applications/services
 - Scalability requirements: many simultaneous user accesses; large amount of hosted data, ...

Search Engine as An Example: Step 1 – Crawling
- Crawling – get all these Web pages out there:
 - First retrieve some root pages;
 - Parse their content and follow hyperlinks to retrieve more pages;
 - Depth-first search or breadth-first search?

Performance Analysis for Crawling
- What are the resources involved?
 - CPU processing for TCP/HTTP protocol handling and the parsing of page content
 - writing to disk storage
 - network bandwidth to remote web sites
- Assume average page size 10KB
 - raw processing power of a single CPU
 - 1000 pages/sec
 - I/O to a single disk
 - 100 seeks/sec ⇒ up to 100 pages/sec
 - network bandwidth from/to the Internet
 - T1 link (1.5Mbit/s) ⇒ 12 pages/sec
 - T3 link (45Mbit/s) ⇒ 360 pages/sec
Parallel Crawling

- Challenge
 - Avoid redundant crawling

Search Engine as An Example: Step 2 – Indexing

- Indexing
 - crawled raw web pages are not easy to search.
 - we index them to formats that are easy to search.
- As part of indexing, we need to give each page an ID
 - using a hash function.

Computer:
- Page #123
- Page #357
-

Networks:
- Page #124
- Page #468
-

- Fast intersection?

Search Engine as An Example: Step 3 – Online Search

Partitioning and Replication

Scalability, reliability
Load Balancing over Internet Servers

- Popular sites like Google or Facebook receive tens or hundreds of millions of hits per day.
- A large number of replicated servers are used at these sites.
- **Key question**: how to balance client requests over these servers?
- Goals:
 - Performance
 - Ease of deployment

Discussion on DNS Rotation

- **Advantages**
 - Require almost no change on the existing Internet architecture
- **Problems**
 - DNS Caching
 - Rigid load balancing policy
 - can’t balance based on runtime load changes
 - slow or no adjustment in response to failures

Load Balancing on Internet Servers Technique 1 - DNS Rotation

- IP address of Facebook.com?
 - 128.111.1.2
 - 128.111.1.3
 - 128.111.1.4

Load Balancing on Internet Servers Technique 2 – Cooperative Offloading
Discussions on Cooperative Offloading

- Can be combined with the DNS rotation.

- Advantages:
 - More flexible policy is possible
 - Be more responsive to runtime workload and server failures (to a certain degree)

- Problems:
 - Need software changes on servers
 - Longer delay

Cooperative Offloading vs. TCP Handoff

- Software changes on the servers

- Delays

Cooperative Offloading with TCP Handoff [Pai et al. ASPLOS1998]

- What does 1.3 do?
- What does 1.4 do?
- What does client do?

Load Balancing on Internet Servers

Technique 3 – Load Balancing Router

Internet

128.111.1.2

128.111.1.3

128.111.1.4

Web servers for CNN.com

Firewall/LB Router

128.111.1.1

1.3

1.4

clt IP

clt IP

clt IP

clt IP

All packets in a TCP connection must offload to one server.
More About Load Balancing Router

Load balancing policies in LB routers (Goal: transparency, plug-and-play)
- Simple rotation
- Least number of active requests
- Shortest response time

How deep do we look into the network protocol stack?
- Network layer (IP)?
- Transport layer (TCP/UDP)?
- Application layer?

Summary

- Scalable Internet servers
 - partitioning
 - replication
- Load balancing for Internet servers
 - DNS rotation
 - Cooperative offloading (w. TCP handoff)
 - Load balancing router
- Changes required on the components:
 - DNS server??
 - Web server??
 - Client??
 - Router??