
CSC 258/458 Written Assignment

Due Monday, February 24, 2014

1. (10 points) We say that write-after-read and write-after-write dependencies are not true dependencies.

Why? Provide sufficient details to justify your answer.

Answer sketch: Consider write-after-read and write-after-write dependencies on a named variable.

The dependencies can be removed if the following read/write is redirected to a new location (away

from the target location of the preceding write). To ensure correctness, subsequent reads/writes to

the named variable should access the new location. The register renaming technique performs this

optimization.

2. (10 points) A cache coherence protocol may invalidate a cached data item at processor X that is

being modified by another processor Y . Alternatively, the cache coherence protocol can update the

cached copy while keeping it valid. What is the advantage of updating over invalidation? What is the

disadvantage of updating?

Answer sketch: The advantage of updating is that if processor X later tries to read the data, it would

be available in the local cache. Its disadvantage is that if processor Y modifies the data repeatedly

before processor X reads it (if at all), then the system will pay the overhead of updating with little

benefit.

3. (10 points) Consider the following execution of two parallel programs on a shared-memory multipro-
cessor.

/* Initially flag1 = flag2 = 0 */

/* P1 */ /* P2 */

flag1 = 1; flag2 = 1;

turn = 2; turn = 1;

while (flag2 && turn==2) ; while (flag1 && turn==1) ;

/* ... critical section */ /* ... critical section */

flag1 = 0; flag2 = 0;

Assume that the processor and compiler does not reorder any memory operations. However, the mul-

tiprocessor has processor-local caches without cache coherence. Does the above program guarantee

mutually exclusive executions of the critical sections (e.g., the processes do not enter their respective

critical sections at the same time)? Explain your answer.

Answer sketch: Without cache coherence, the above program does not guarantee mutual exclusion.

Specifically, if P1 updates its local cached copy of flag1 without being seen by P2, and that P2 updates

its local cached copy of flag2 without being seen by P1, then both processes may enter their critical

sections at the same time.

4. (10 points) Consider the following execution of three parallel programs on a shared-memory multi-
processor.

1



/* Initially A = B = 0 */

/* P1 */ /* P2 */ /* P3 */

A = 1; while (A == 0) ; /* wait */ if (B == 1)

B = 1; output(A);

If the multiprocessor supports sequential memory consistency, what are possible outputs for P3?

Answer sketch: If P3 does produce an output, it must output 1. Sequential memory consistency means

that memory accesses effectively follow a global sequential order across all processes. P3’s output

instruction, if it runs, must be after P2’s instruction B = 1, which must be after P1’s instruction A =

1. This ordering means P3 must output 1.

5. The atomic instruction test and set assigns a value to a location and returns the old value of the
location. Consider the lock/unlock routines below that protect a critical section (acquire lock before
entering; release lock after leaving).

acquire_lock(L *location) {

while (test_and_set(location, locked) == locked) {

while (*location == locked) ;

}

}

release_lock (L *location) {

*location = unlocked;

}

(a) (10 points) If the multiprocessor supports sequential memory consistency, show that the above

lock/unlock routines ensure mutual exclusion of protected critical sections.

Answer sketch: Sequential memory consistency means that memory accesses effectively fol-

low a global sequential order across all processes. Each acquire lock succeeds when the

test and set instruction returns unlocked. Therefore each critical section execution is pre-

ceded by a test and set instruction that returns unlocked. In the sequential ordering of

memory operations, two unlocked-returning test and sets must be separated by at least

an unlock instruction in release lock. Therefore the mutual exclusion of critical sections is

ensured.

(b) (10 points) Dr. Foobar says that the second while loop in acquire lock is unnecessary for

correct synchronization. Is Dr. Foobar right? Explain your answer.

Answer sketch: Dr. Foobar is right. The correctness argument for the last sub-question does not

need the second while loop in acquire lock.

(c) (10 points) Dr. Foobar also says that the second while loop in acquire lock may help improve

the synchronization performance. Is Dr. Foobar right? Explain your answer.

Answer sketch: Dr. Foobar is right. test and set instructions incur traffic on the memory

bus. The second while loop in acquire lock helps to reduce such memory bus traffic, and

consequently it may improve the synchronization performance.

6. (10 points) One of the earliest “read-modify-write” atomic instructions is compare and swap. The

instruction takes three operands: the location to be modified, a value that the location is expected to

contain, and a new value to be placed there if (and only if) the expected value is found. The instruction

returns an indication of whether it succeeded. Show that compare and swap can be used to emulate

test and set which atomically assigns a value to a location and returns the old value of the location.

Answer sketch:

2



test_and_set(location, value) {

R2 = value;

do {

R1 = *location;

}

while (! compare_and_swap(location, R1, R2)) ;

return R1;

}

3


