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What is Shared Memory? 

Shared memory: Memory that may be 

simultaneously accessed by two or more 

processing elements  

 

proc1 proc2 proc3 procN 

Shared memory space 

Coherent Shared Memory: A 

Look Underneath 

proc1 proc2 proc3 procN 

Shared memory 

cache1 cache2 cache3 cacheN 

Shared Memory Implementation 

• Coherence - defines the behavior of reads and 
writes to the same memory location 
–  ensuring that modifications made by a processor 

propagate to all copies of the data 

– Program order preserved 

– Writes to the same location by different processors 
serialized 

• Synchronization - coordination mechanism 

• Consistency - defines the behavior of reads and 
writes with respect to access to other memory 
locations  
– defines when and in what order modifications are 

propagated to other processors 
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Coherence 

A multiprocessor memory system is coherent if the results 
of any execution of a program are such that, for each 
location, it is possible to construct a hypothetical serial 
order of all operations to the location that is consistent 
with the result of the execution and ensure that  
– modifications made by a processor propagate to all copies of the 

data (write propagation) 

– operations by each process occur in the order in which they 
were issued to the memory system by the process 

– writes to the same location by all processors are serialized (write 
serialization) and the value returned by each read is the value 
written by the last write in the hypothetical order 

–   

Snoop-Based Coherence 

• Makes use of a shared broadcast medium to 
serialize events (all transactions visible to all 
controllers and in the same order) 
– Write update-based protocol 

– Write invalidate-based (e.g., basic MSI, MESI protocols) 

• Cache controller uses a finite state machine 
(FSM) with a handful of stable states to track the 
status of each cache line 

• Consists of a distributed algorithm represented 
by a collection of cooperating FSMs 

A Simple Invalidate-Based 

Protocol 

- State Transition Diagram 

Correctness Requirements 

• Need to avoid 

– Deadlock – caused by a cycle of resource 

dependencies 

– Livelock – activity without forward progress 

– Starvation – extreme form of unfairness 

where one or more processes do not make 

forward progress while others do 
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Design Challenges 

• Cache controller and tag design 

• Non-atomic state transitions 

• Serialization 

• Cache hierarchies 

• Split-transaction buses 
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72-core Scaling Challenges 

• Bandwidth and shared resource 

contention 

• Non-uniform memory access 

• Power/energy efficiency 

• Scalable coherence implementation 
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Snoop-Based or Broadcast 

Coherence 

• Make use of a broadcast medium to 

manage replicas 

• Benefit: Low metadata requirements 

• Challenge: High bandwidth requirements 

 

proc1 proc2 proc3 procN 

Shared memory 

cache1 cache2 cache3 cacheN 

bus 

Solution: Directory-based Cache Coherence 

Directory:  maintain per-core sharer information to save bandw idth 

 

Full map: associate sharing vector w ith tags of shared L2 
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Directory-Based Coherence  

• Distribute memory, use point-to-point 

interconnect for scalability 

• Need to manage coherence for each 

memory line – state stored in directory 

– Simple memory-based (e.g., DASH, FLASH, 
SGI Origin, MIT Alewife, HAL) 

– Cache-based (linked list (e.g., Sequent 
NUMA-Q, IEEE SCI) 

Multiprocessor Interconnects 

• Topology 

• Routing algorithm 

• Switching strategy (circuit vs. packet) 

• Flow control mechanism 
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Interconnect Topologies 

• Fully connected  

– Single large switch 

– Bus 

• Linear arrays and rings 

• Multi-dimensional meshes and tori 

• Trees  

• Butterflies 

• Hypercube 

 

Simple Memory-based Directory 

Coherence 

• Advantage  

– Precise sharing information 

• Disadvantage 

– Space/storage proportional to PxM 

• Work-around for either width or height 

– Increase cache block size 

– 2-level protocol 

– Limited pointer scheme 

– Directory cache 

   

  

! 

Cache-Based Directory Coherence 

• Home main memory contains a pointer to 

the first sharer + state bits 

• Pointers at each cache line to maintain a 

doubly-linked list 

• Advantage – reduced space overhead 

• Disadvantage – serialized invalidates 

(latency and occupancy) 
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Basic Hardware Mechanisms for 

Synchronization 
• Test-and-set – atomic exchange 

• Fetch-and-op (e.g., increment) – returns value 

and atomically performs op (e.g., increments it) 

• Compare-and-swap – compares the contents of 

two locations and swaps if identical 

• Load-locked/store conditional – pair of 
instructions – deduce atomicity if second 

instruction returns correct value 

Memory Consistency Model 

• Specifies constraints on the order in which 

memory operations to different locations 

must appear to be performed with respect 

to one another 

Sequential Consistency 

• ``A system is sequentially consistent if the result 
of any execution is the same as if the operations 

of all the processors were executed in some 

sequential order, and the operations of each 

individual processor appear in this sequence in 

the order specified by its program.'' [Lamport 79] 

– In practice, this means that every write must be seen 

on all processors before any succeeding read or write 
can be issued 

 

Implications 

• Program order 

        P1                                 P2 

    A = 1;                              while (flag == 0); 

    flag = 1;                           print A; 

• Write atomicity 

       P1                P2                 P3 

   A = 1;          while (A == 0);    

                       B = 1;                while (B == 0); 

                                                print A; 
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Dekker’s Algorithm 

 

P1: A = 0;                       P2: B = 0; 

       …                                   … 

       A = 1;                             B = 1; 

L1: while (B == 1) {..}           L2: while (A == 1) {…} 

      …                                      … 

Can B = 0 at P1 and A = 0 at P2 at the corresponding 
 if statements? 

Write Buffers [Bypassing 

Capability] 

• Reads bypass writes, reads are blocking 

Overlapping Write Operations  

• Writes may bypass other writes in write buffer 

Non-blocking Reads 

• Reads are allowed to bypass reads and 
writes  
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Drawbacks of Sequential 

Consistency  

• SC restricts any compiler optimization that can result in 
reordering memory operations 

– Code motion, register allocation, common sub-
expression elimination, loop blocking, software 
pipelining 

• SC restricts hardware generated memory re-orderings 
because of program-order and write-atomicity 
requirements 

– Write Buffers, OOO instruction issue, pipelining of 
memory operations, lock-up free caches, non-atomic 
memory operations 

• Potential performance penalties from the above 

 

Memory Model Relaxations 
• Possible relaxations 

– Write          Read  

– Write          Write 

– Read           Read, Write 

– Read other’s write early  

– Read own write early  

• All Models provide some Safety net (memory 
fence/ordering instructions or prefixes) 

• All models maintain uni-processor data and control 
dependencies 

• Write serialization is maintained by all the models  

except PC, RCpc, PowerPC [for most practical purposes 
where all processors observe all write operations in the same order 
(write serialization), is indistinguishable from a system where all 

writes are executed atomically]   

Categorization of Relaxed Models Relaxing All Program Orders  

• Read or a Write operation may be reordered w.r.t 
following read or write to a different location 

– Weak Ordering Model 

• Release Consistency Model (RCsc / RCpc) 

• Digital Alpha, Sparc V9 RMO, IBM Power PC 

• Except Alpha, the above models allow reordering of 

two reads to the same location.  

• RCpc and PowerPC allow a read to return the value 
of another processors write early.  
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Release Consistency    

• Distinguishes between ordinary and special memory 
accesses 

• Ordinary accesses are completely unordered with 

respect to each other 

• Divides synchronization into acquires and releases 

Read/Write…. 

Read/Write…. 

Read/Write…. 

Acquire 

Read/Write…. 

Read/Write…. 

Read/Write…. 

Release 

shared 

ordinary special 

sync nsync 

acquire release 

Read/Write…. 

Read/Write…. 

Read/Write…. 

RC Example 

acquire 

A = 1; 

release 

While (A==0); 

acquire 

B = 1; 

release 

While (B==0); 

Print A; 

RC 

Before an ordinary access to a shared variable is performed, all 
previous acquires done by the process must have completed 
successfully 

Before a release is allowed to be performed, all previous reads and 
writes by the process must have completed (therefore, example 
below should always print A=1) 

Threads cannot be implemented 

as a library [Boehm, PLDI’05] 
• E.g., C/C++ with pthreads library  

“Applications shall ensure that access to any memory location by more 

than one thread of  control (threads or processes) is restricted such that no 
thread of  control can read or modif y a memory location while another 

thread of  control may  be modifying it. Such access is restricted using 

f unctions that synchronize thread execution and also synchronize memory 

with respect to other threads.” 

• How is this enforced? 

– Programs must use library-provided synchronization 

– Memory barrier instructions used within the l ibrary 

synchronization to prevent hardware memory access reordering 

– Synchronization calls treated as opaque to avoid compiler 

memory access reordering 

Example: Concurrent 

Modification 
• Does this program contain a race? 

Initially, x=y=0   Compiler transformation 

if(x==1) ++y;   ++y; if(x!=1) –-y; 

if (y==1) ++x;    ++x; if (y!=1) --x; 

 

• No race in original program since no 

variable can become non-zero 

• … if the compiler makes the modifications 

on the right, there is a race! 

T1: 

T2: 
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Summary 

• Non-atomic state transitions complicate 

coherence implementation 

• Directory protocols used to scale 

processors to large core counts 

• Relaxed consistency models allow 

read/write reorderings 

– Implications for the hardware 

– Implications for the compiler 


