
1

Shared Memory: More on

Coherence and Consistency

Sandhya Dwarkadas

University of Rochester

What is Shared Memory?

Shared memory: Memory that may be

simultaneously accessed by two or more

processing elements

proc1 proc2 proc3 procN

Shared memory space

Coherent Shared Memory: A

Look Underneath

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

Shared Memory Implementation

• Coherence - defines the behavior of reads and
writes to the same memory location
– ensuring that modifications made by a processor

propagate to all copies of the data

– Program order preserved

– Writes to the same location by different processors
serialized

• Synchronization - coordination mechanism

• Consistency - defines the behavior of reads and
writes with respect to access to other memory
locations
– defines when and in what order modifications are

propagated to other processors

2

Coherence

A multiprocessor memory system is coherent if the results
of any execution of a program are such that, for each
location, it is possible to construct a hypothetical serial
order of all operations to the location that is consistent
with the result of the execution and ensure that
– modifications made by a processor propagate to all copies of the

data (write propagation)

– operations by each process occur in the order in which they
were issued to the memory system by the process

– writes to the same location by all processors are serialized (write
serialization) and the value returned by each read is the value
written by the last write in the hypothetical order

–

Snoop-Based Coherence

• Makes use of a shared broadcast medium to
serialize events (all transactions visible to all
controllers and in the same order)
– Write update-based protocol

– Write invalidate-based (e.g., basic MSI, MESI protocols)

• Cache controller uses a finite state machine
(FSM) with a handful of stable states to track the
status of each cache line

• Consists of a distributed algorithm represented
by a collection of cooperating FSMs

A Simple Invalidate-Based

Protocol

- State Transition Diagram

Correctness Requirements

• Need to avoid

– Deadlock – caused by a cycle of resource

dependencies

– Livelock – activity without forward progress

– Starvation – extreme form of unfairness

where one or more processes do not make

forward progress while others do

3

Design Challenges

• Cache controller and tag design

• Non-atomic state transitions

• Serialization

• Cache hierarchies

• Split-transaction buses

Multicore Processors

Everywhere

The Multicore Trend

2004,

Prescott
Single-core

2012,

Tegra4
Quad-core

2012,

Xeon Phi
60-core

ht t p: / / www. ext r em et ech. com / wp- cont ent / u pl oad s/ 201 2/ 07/ Aubr e y>I . jp g

ht t p: / / im g. clubic. com / 00073094- phot o- die- int e l- pr es cot t . jpg

ht t p: / / im ages. bit - t ech. net / cont ent_im ages/ 2011/ 01/ int el- sandy- br idge- r eview/ sandy- br idge- die-
m ap. jpg

ht t p: / / i1-news.soft pedia- static. com /im ages/news2/ NVIDI A-Tegra- 4-Benchm ar k-Surf aces-Thanks- to- Project- Shield-Owner -2.jpg?1368004105

ht t p: / / news. cnet .com/8301- 1001_3-57569992-92/t iler as- 72- core-chip- doubles-down-on-m ult icore- appr oach/

2010,

Sandy bridge
quad-core

2013, Tilera

72-core Scaling Challenges

• Bandwidth and shared resource

contention

• Non-uniform memory access

• Power/energy efficiency

• Scalable coherence implementation

4

Snoop-Based or Broadcast

Coherence

• Make use of a broadcast medium to

manage replicas

• Benefit: Low metadata requirements

• Challenge: High bandwidth requirements

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

bus

Solution: Directory-based Cache Coherence

Directory: maintain per-core sharer information to save bandw idth

Full map: associate sharing vector w ith tags of shared L2

P0

P1

P2

P3

Directory /Shared cache

tag

tag

tag

1000

0110

0001

tag 0000

tag Data tag Data Data tag Data tag

Data

Data

Data

Data

Block A Block B Block B Block C

Block A

Block B

Block C

Block D

Directory-Based Coherence

• Distribute memory, use point-to-point

interconnect for scalability

• Need to manage coherence for each

memory line – state stored in directory

– Simple memory-based (e.g., DASH, FLASH,
SGI Origin, MIT Alewife, HAL)

– Cache-based (linked list (e.g., Sequent
NUMA-Q, IEEE SCI)

Multiprocessor Interconnects

• Topology

• Routing algorithm

• Switching strategy (circuit vs. packet)

• Flow control mechanism

5

Interconnect Topologies

• Fully connected

– Single large switch

– Bus

• Linear arrays and rings

• Multi-dimensional meshes and tori

• Trees

• Butterflies

• Hypercube

Simple Memory-based Directory

Coherence

• Advantage

– Precise sharing information

• Disadvantage

– Space/storage proportional to PxM

• Work-around for either width or height

– Increase cache block size

– 2-level protocol

– Limited pointer scheme

– Directory cache

!

Cache-Based Directory Coherence

• Home main memory contains a pointer to

the first sharer + state bits

• Pointers at each cache line to maintain a

doubly-linked list

• Advantage – reduced space overhead

• Disadvantage – serialized invalidates

(latency and occupancy)

6

Basic Hardware Mechanisms for

Synchronization
• Test-and-set – atomic exchange

• Fetch-and-op (e.g., increment) – returns value

and atomically performs op (e.g., increments it)

• Compare-and-swap – compares the contents of

two locations and swaps if identical

• Load-locked/store conditional – pair of
instructions – deduce atomicity if second

instruction returns correct value

Memory Consistency Model

• Specifies constraints on the order in which

memory operations to different locations

must appear to be performed with respect

to one another

Sequential Consistency

• ``A system is sequentially consistent if the result
of any execution is the same as if the operations

of all the processors were executed in some

sequential order, and the operations of each

individual processor appear in this sequence in

the order specified by its program.'' [Lamport 79]

– In practice, this means that every write must be seen

on all processors before any succeeding read or write
can be issued

Implications

• Program order

 P1 P2

 A = 1; while (flag == 0);

 flag = 1; print A;

• Write atomicity

 P1 P2 P3

 A = 1; while (A == 0);

 B = 1; while (B == 0);

 print A;

7

Dekker’s Algorithm

P1: A = 0; P2: B = 0;

 … …

 A = 1; B = 1;

L1: while (B == 1) {..} L2: while (A == 1) {…}

 … …

Can B = 0 at P1 and A = 0 at P2 at the corresponding
 if statements?

Write Buffers [Bypassing

Capability]

• Reads bypass writes, reads are blocking

Overlapping Write Operations

• Writes may bypass other writes in write buffer

Non-blocking Reads

• Reads are allowed to bypass reads and
writes

8

Drawbacks of Sequential

Consistency

• SC restricts any compiler optimization that can result in
reordering memory operations

– Code motion, register allocation, common sub-
expression elimination, loop blocking, software
pipelining

• SC restricts hardware generated memory re-orderings
because of program-order and write-atomicity
requirements

– Write Buffers, OOO instruction issue, pipelining of
memory operations, lock-up free caches, non-atomic
memory operations

• Potential performance penalties from the above

Memory Model Relaxations
• Possible relaxations

– Write Read

– Write Write

– Read Read, Write

– Read other’s write early

– Read own write early

• All Models provide some Safety net (memory
fence/ordering instructions or prefixes)

• All models maintain uni-processor data and control
dependencies

• Write serialization is maintained by all the models

except PC, RCpc, PowerPC [for most practical purposes
where all processors observe all write operations in the same order
(write serialization), is indistinguishable from a system where all

writes are executed atomically]

Categorization of Relaxed Models Relaxing All Program Orders

• Read or a Write operation may be reordered w.r.t
following read or write to a different location

– Weak Ordering Model

• Release Consistency Model (RCsc / RCpc)

• Digital Alpha, Sparc V9 RMO, IBM Power PC

• Except Alpha, the above models allow reordering of

two reads to the same location.

• RCpc and PowerPC allow a read to return the value
of another processors write early.

9

Release Consistency

• Distinguishes between ordinary and special memory
accesses

• Ordinary accesses are completely unordered with

respect to each other

• Divides synchronization into acquires and releases

Read/Write….

Read/Write….

Read/Write….

Acquire

Read/Write….

Read/Write….

Read/Write….

Release

shared

ordinary special

sync nsync

acquire release

Read/Write….

Read/Write….

Read/Write….

RC Example

acquire

A = 1;

release

While (A==0);

acquire

B = 1;

release

While (B==0);

Print A;

RC

Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed
successfully

Before a release is allowed to be performed, all previous reads and
writes by the process must have completed (therefore, example
below should always print A=1)

Threads cannot be implemented

as a library [Boehm, PLDI’05]
• E.g., C/C++ with pthreads library

“Applications shall ensure that access to any memory location by more

than one thread of control (threads or processes) is restricted such that no
thread of control can read or modif y a memory location while another

thread of control may be modifying it. Such access is restricted using

f unctions that synchronize thread execution and also synchronize memory

with respect to other threads.”

• How is this enforced?

– Programs must use library-provided synchronization

– Memory barrier instructions used within the l ibrary

synchronization to prevent hardware memory access reordering

– Synchronization calls treated as opaque to avoid compiler

memory access reordering

Example: Concurrent

Modification
• Does this program contain a race?

Initially, x=y=0 Compiler transformation

if(x==1) ++y; ++y; if(x!=1) –-y;

if (y==1) ++x; ++x; if (y!=1) --x;

• No race in original program since no

variable can become non-zero

• … if the compiler makes the modifications

on the right, there is a race!

T1:

T2:

10

Summary

• Non-atomic state transitions complicate

coherence implementation

• Directory protocols used to scale

processors to large core counts

• Relaxed consistency models allow

read/write reorderings

– Implications for the hardware

– Implications for the compiler

