il

Distributed Memory Parallel
Programming and MPI

Kai Shen

2/25/2014 CSC 258/458 - Spring 2014

2/25/2014

Parallel Programming Model

Shared memory
= Writes to a shared location are visible to all

Distributed memory

= No shared memory; data is partitioned and must be shared through

explicit communication (message passing)
Problems

= Additional challenges to programmers: explicit communications,

data partitioning
= Slower inter-process communications

Why distributed memory parallel programming?

2/25/2014 CSC 258/458 - Spring 2014

Why Distributed Memory Parallel
Programming?

Less requirement on hardware support
= cluster of machines connected by commodity network

= more scalable (multiprocessor cache-coherence at large scale is
expensive and difficult to build)

No worry of multiprocessor memory consistency
= no memory consistency-related errors

More portable
= can run on shared memory multiprocessors
= can run on hybrid distributed/shared-memory platforms

Better locality of parallel programs
= programmer knows her/his program best

2/25/2014 CSC 258/458 - Spring 2014

Parallel Programming Steps

Converting a sequential application to a parallel one

Decompose into tasks
= Also partition the data

Assign tasks to processors
= Also assign data to processors

Orchestrate data access and synchronization
= Also orchestrate message passing

2/25/2014 CSC 258/458 - Spring 2014

Message Passing Interface

= De facto standard programming interface for message passing-
based parallel programs

= You write a single program, multiple copies of which will run on
multiple processors

= Assumption: all processes do mostly similar things
= Different parts distinguish through process ID

= Communications
= Point-to-point: send/receive
= Group communications: broadcast, gather, scatter, reduce, barrier

= Itis a programming interface, not an implementation specification!

2/25/2014 CSC 258/458 - Spring 2014

2/25/2014

MPI Send/Receive

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, ...);

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, ...);

= Matching send/receive:
= Process x sends a message to process y
= Process Yy receives a message from process x

for (i = 0; i < nprocs; i++)
if (i '=me) {
MPI_Send(&d, 1, MPI_INT, i, tag, MPI_COMM_WORLD);
}

for (i=1; i < nprocs; i++) {
MPI_Recv(&d, 1, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &status);
}

2/25/2014 CSC 258/458 - Spring 2014

MPI Send/Receive

Alternative send/receive modes:
= Nonblocking receive

= Nonblocking send

= Synchronous send

2/25/2014 CSC 258/458 - Spring 2014

MPI Group Communications

= Barrier

= All processes wait until all have arrived

= Broadcast

= One process (root) sends a message to be received by others

= Reduce

= A function (MAX, SUM, ...) is applied to data supplied by all processes;
result is returned at one process (root)

= Function is evaluated following process rank order
= Can be optimized if associative and/or commutative

= Can operate in a sub-set of processes

= Customized MPI communicator

2/25/2014 CSC 258/458 - Spring 2014

Performance Issues

= Load balance
= dynamic task assignment difficult, why?
= careful data partition and task assignment

2/25/2014 CSC 258/458 - Spring 2014 9

2/25/2014

Performance Issues

= Synchronization/communication wait
= block as late as possible
= Receive as late as you can, use nonblocking Receive when you can

2/25/2014 CSC 258/458 - Spring 2014 10

Performance Issues

= Long communication latency (vs. high bandwidth)

= our Ethernet cluster: 250us latency, 80MB/sec bandwidth if 1KB per
synchronization, effective bandwidth is 4MB/sec

= synchronize/wait as few times as possible

2/25/2014 CSC 258/458 - Spring 2014 11

Performance Issues

= Group communication lead to group wait
= only when necessary, on smallest group necessary

2/25/2014 CSC 258/458 - Spring 2014 12

Deadlocks

s Why does my MPI program get stuck?

= Possible reasons
= Group communications are not called by all in the group
= Receive without a matching send
= Matching send for a receive cannot be reached
= Receive before Send
= Send before Receive; but Send blocked by insufficient buffer space

s Debugging
= First find out where each process is blocked at
= How does it conflict with design? What’s wrong with implementation?

2/25/2014 CSC 258/458 - Spring 2014 13

2/25/2014

Parallel Programming Example:
Successive Over Relaxation

= SOR implements a mathematical model for many natural
phenomena, e.g., heat dissipation, ocean currents

= Given a 2D grid of data, for some number of iterations:
= For each internal grid point, compute average of its four neighbors

for (i=1; i<n; i++)
for (j=1; j<n; j++)
templi][j] = 0.25 * (grid[i-1][j]+grid[i+1][j1+grid[i][j-1]+grid[i][j+11]);
for(i=1; i<n; i++)
for(j=1; j<n; j++)

grid[i][j] = temp[i][i];

2/25/2014 CSC 258/458 - Spring 2014 14

Parallel Programming Example:
Successive Over Relaxation

for (i=1; i<n; i++)
for (j=1; j<n; j++)
templi][j] = 0.25 * (grid[i-1][j]+grid[i+1][j]+grid[i][j-1]+grid[i] [j+1]);
for(i=1; i<n; i++)
for(j=1; j<n; j++)
grid[i1[i] = temp[i[il;
= Task decomposition and data partitioning:
= 1D partitioning: each process manages some columns or rows
= 2D partitioning: each process manages a 2D block of the grid
= Message passing:
= Pass messages on boundary data
= Send to all neighbors before receiving
= 1D or 2D partitioning?
= Nonblocking send/receive as much as possible

2/25/2014 CSC 258/458 - Spring 2014 15

Gaussian Elimination

= Reduce an equation matrix into an equivalent upper-diagonal matrix
= Partial pivoting to maintain numerical stability

A X R

A, f
p*A.1+A., Iy +p*r;

s Task decomposition and data partitioning:
= Communication/synchronization in row partitioning

= Find the maximum pivot, distribute the major row

= Communication/synchronization in column partitioning

= Distribute the major column

2/25/2014 CSC 258/458 - Spring 2014 16

Gaussian Elimination

= Reduce an equation matrix into an equivalent upper-diagonal matrix
= Partial pivoting to maintain numerical stability

A X R

A

5,1 r
p*A:,1+A:,2

1
I +p*r;

m Task decomposition and data partitioning:
= Block vs. cyclic partitioning?

2/25/2014 CSC 258/458 - Spring 2014 17

2/25/2014

I/0 for Parallel Programs

= Reading/writing large amount of data from/to storage
= Parallel processes read a large matrix of data
= Parallel processes write output statistics

= Using a dedicated I/O process

= All /O is issued at the dedicated I/O process; other processes
communicate with the /O process for I/O

= Problem: scalability

2/25/2014 CSC 258/458 - Spring 2014

18

MPI-1/O

= Often, each process reads/writes from/to a distinct file/data partition

= MPI-I/O
= providing data structures to partition data, using standard interface to
ease programming (file view, displacement, ...)
= http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (Sec 13.3)

= limitation: not very helpful for accessing irregular data structures (sparse
matrices)

2/25/2014 CSC 258/458 - Spring 2014 19

