2/27/2014

il

MPI Implementation

Kai Shen

2/27/2014 CSC 258/458 - Spring 2014

Message Passing Interface

= De facto standard programming interface for message passing-
based parallel programs
= No shared memory

s Communications

= Point-to-point: send/receive
= Group communications: broadcast, gather, scatter, reduce, barrier

2/27/2014 CSC 258/458 - Spring 2014 2

MPI Communications

Cluster of machines = TCP/IP/Ethernet

Performance issues with TCP/IP
= Connection establishment
= Congestion control
= Lots of data copying in systems layers
Advanced technologies
= UDP or raw IP with some error detection management
= RDMA to minimize data copying

Performance issues with Ethernet

= Legacy design for shared bus, slow networks
Advanced technologies

= Infiniband, Myrinet

2/27/2014 CSC 258/458 - Spring 2014

MPI Communications in Shared Memory

MPI communications in shared memory multiprocessors

TCP/IP

= Shared memory accesses
= Shared message queue and buffer
= Synchronization to protect shared accesses
= Contention may create scalability bottleneck

Number of memory copying operations
= two

= orone?

= orzero?

2/27/2014 CSC 258/458 - Spring 2014 4

Communication Performance

Short message latency Long message throughput

300

200 §
g g
Sapgb b &
g e Riegatta fshmem o B00p e Regatta /shmem []
& AB0f] e Rigatta ITCPIP | 5 Regatta [TCPIP
= PC cluster 5 aoold-e PC cluster i
Broof o T H
L] =

| P | 200r P
F /.,.A--
o L
o 200 400 600 800 1000 o 20 40 60 80 100
Message size (byte) Message size (Kbyte)
2/27/2014 CSC 258/458 - Spring 2014

2/27/2014

Multiprocessors without Cache
Coherence

» Each processor (or a sub-group of processors) has some local
memory

Custom network/bus allow fast access to remote memory
= No support for cache coherence, which allows the system to scale

= Large multiprocessors from Cray, IBM, ...

2/27/2014 CSC 258/458 - Spring 2014

Pipelined Communications

= Heard it from Prof. Chen Ding
= Motivation
= Large message filled over time at the sender
= Incrementally useful at the receiver
= Inefficient to send after the full message is filled
= Pipelined communications
= Partial message is sent as soon as the data is available

= When a part of the message arrives, the subsequent computation
that only depends on this part of the data can proceed

= Problems
= At the sender, how do we know that a part of the message is filled?

= At the receiver, how do we know that a subsequent computation
only depends on data that has already arrived?

2/27/2014 CSC 258/458 - Spring 2014

Collective Communications:
Broadcast

= Performance goal:
= total bandwidth usage
= latency to reach receivers (worst case or average)

= Many communication system supports native broadcast
= ethernet broadcast

= Otherwise:
= root sends to every receiver one by one

= root sends to one other; both send to two more; then all reached
nodes send to some unreached at each round; ...

= does the order matter?

2/27/2014 CSC 258/458 - Spring 2014

Collective Communications: Reduce

Approaches
= all data sent to the root; reduced at root
= tree-ordered parallel reduction (reduction op is associative)

= adaptive order based on progress at each node (if op is
commutative)

2/27/2014 CSC 258/458 - Spring 2014 9

2/27/2014

MPI without dedicated processors on
Shared Memory Multiprocessor

= 4-processor machine; run 8 MPI processes
What is going to happen?

= Benefit

= better utilization despite load imbalance in static task assignment
= Drawbacks:

= overhead of OS scheduling and context switches (particularly cache

pollution)

= terrible synchronization delays when the MPI implementation spin-
waiting

2/27/2014 CSC 258/458 - Spring 2014 10

Parallel Program Reliability

Checkpointing and restart

Distributed checkpoint is tricky.
= The checkpointed snapshot must be consistent.

= If A has sent out a message to B in a snapshot, it should’ve arrived at B
in the snapshot

= If A has not sent out the message, it should’ve arrived

Checkpointing of different parallel processes need to be
synchronized (or carefully ordered)

2/27/2014 CSC 258/458 - Spring 2014 11

MPI-1/O

= Often, each process reads/writes from/to a distinct file/data partition

= MPI-I/O
= providing data structures to partition data, using standard interface to
ease programming (file view, displacement, ...)
= http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (Sec 13.3)

= limitation: not very helpful for accessing irregular data structures (sparse
matrices)

2/27/2014 CSC 258/458 - Spring 2014 12

2/27/2014

MPI-1/0 Performance Enhancements

= Improve I/0 sequential access patterns:
= Data sieving — read more (sequentially) than what you need

= Collective I/O — while each’s view is segmented, combined view
from all is sequential

1/0 Parallelism

= So far, parallelism in issuing I/O operations
= Still not scalable, e.g., bound by throughput of one 1/0 device

= Next, parallelism in performing 1/O (transparent to users)
= Intra-device parallelism: RAID
= Inter-device parallelism: storage cluster, parallel file system

2/27/2014 CSC 258/458 - Spring 2014 14

MPI MPT MPT
process process process
MPII/O MPII/O MPII/O
library library library
storage
system
2/27/2014 CSC 258/458 - Spring 2014 13
Parallel Storage and Parallel FS
MPT MPI MPT
process process process
MPII/O MPI I/O MPII/O
librar librar: libra;
n Parallel file systems (GPFS, PVFS, Lustre)
= data striping, redundancy encoding,
2/27/2014 CSC 258/458 - Spring 2014 15

A Quantitative Example

= Up to 16 compute nodes running MPICH2 (MPI-10)
= 6 striped storage nodes running PVFS2; each run Linux 2.6.12
= Gigabit Ethernet (~80us TCP/IP roundtrip latency)

ASCI Purple ior_mpiio NPE3.210-MP1
200 100
T | T
= =
o 160} o s
2 2
] ‘]
120}] 1 §- 60F
= block size = 4MB 3
3 } ~ block size = 256KB | 4 - |
3w ock size = i wf
H H
£ wf £ 20
2 2
| PO S S WA S T R, [— P——
12 4 & 8 W0 12 M4 . 1 4 9 16
MP| process count MP| process count
2/27/2014 CSC 258/458 - Spring 2014 16

Compute
node

Storage
node

Problem Diagnosis
—1/0 Trace Collection

= Many layers of software

present possible sources of
MPI process problems
MPI-(Q library = Tracing at multiple layer
+— Event tracing bpuncjarles of 1/0 stack help
Parallel flle system pinpoint problem sources
client ibrary
m Traced I/O characteristics
An 1/O operation = Sequentiality of I/O access
pattern
Parallel fle system [<+— Event tracing = 1/0 request size/granularity
server daemon = 1/0 workload
|-— i i
Syotom lilraries and Event tracing concurrency/idleness
operating system = 1/0O throughput
<~ Eventtracing = Wait between causal I/O
@ events
data
2/27/2014 CSC 258/458 - Spring 2014 17

Results of Trace Analysis

Result #1: interleaved 1/0 under concurrent operations
Further analysis within the operating system
= prefetching in general-purpose OS is insufficient

= anticipatory I/0 scheduling does not work properly due to the lost of
remote process context at storage nodes

Result #2: slow return of 1/0 that should hit the cache
Further analysis within the C library
= PVFS uses one open file to issue 1/0 operations on the same file

= all asynchronous I/O operations using the same open file are serialized
by the Clibrary

2/27/2014 CSC 258/458 - Spring 2014 18

110 throughput (MBytesisecand)

Performance Results After Problem
F

ASCI Purple kor_mpiio (256KB block) NPB3.2I0-MP1
200 Tog [- T -
original system g‘
160 || = improved system 2 aui
ki
120 ‘g- su,l 1
= = original system
80 R = improved system
% I
a0 £ 20
o
P L " " .
12 4 13 a 10 12 4 1. 1 4 8 6
MP| process count MPI process count

Resolved anomalous performance degradations
39-156% throughput improvement for four applications

2/27/2014 CSC 258/458 - Spring 2014 19

2/27/2014

