Additional Parallel Programming
* Models and Techniques

Kai Shen

3/6/2014 CSC 258/458 - Spring 2014

Difficulty of Parallel Programming

= So far we have: pthreads, MPI
= Difficulty in explicitly coordinating parallel executions and
implementing synchronization
= Difficult to handle platform-specific performance issues

3/6/2014 CSC 258/458 - Spring 2014

Difficulty of Parallel Programming

= Enhanced threads
= Better scheduling: Cilk
= Easier synchronization: Transactional memory

= Programs expose parallelism only
= Runtime system coordinate parallel executions and implement
synchronization
= Programs can expose fine-grained parallelism that does not have to
be exploited on a particular running environment

= Automatic parallelization
= Compiler expose parallelism; runtime system manage the rest
= Speculative parallelism

= Specialized parallelism
= Big data: MapReduce/Hadoop
= Server

3/6/2014 CSC 258/458 - Spring 2014

Cilk (developed at MIT)

= Anexample
cilk int fib (int n) {
if (n <2)
return n;
else {
int x, y;
x = spawn fib (n-1);
y = spawn Ffib (n-2);
sync;
return (x+y);

3
= Very much like threads; in fact, Cilk = C silk, silk = nice thread

3/6/2014 CSC 258/458 - Spring 2014

3/6/2014




Runtime Task Scheduler

= Scheduler maintains a queue of tasks for each processor

= Better locality and less synchronization contention compared to a
central task queue

= When out of work, a processor steals some task from another
queue with available tasks

= Load balancing

= Owner processor works on one end of the queue, thief works on
the other

= Less synchronization contention

3/6/2014 CSC 258/458 - Spring 2014

Transactional Memory

Not full-flown parallel programming model, but augment threads
programming with simplified synchronization.

Motivation: locks are hard to manage
= fine-grained vs. coarse-grained?

Programmer specifies a group of load and store operations to be
executed in an atomic way.

When atomic groups are too large
= serializing them limits parallelism

= speculatively executing them in parallel, detect conflicts and manage
them (rollback speculative run)

Significant research done here by Prof. Michael Scott and students.

3/6/2014 CSC 258/458 - Spring 2014

OpenMP

= Shared-memory parallel programming

= Advantages over threads
= Simpler programming interface
= Richer set of primitives, integrated with programming languages

= Programmers expose parallelism, but do not have to coordinate the
parallel execution

3/6/2014 CSC 258/458 - Spring 2014

OpenMP Example

Examples from Wikipedia

#pragma omp parallel private(th_id)
{
th_id = omp_get_thread_num(Q);
printf(*"Hello World from thread %d\n", th_id);
#pragma omp barrier
if (th_id ==0) {
nthreads = omp_get_num_threads();
printf("There are %d threads\n",nthreads);
¥
3
3/6/2014 CSC 258/458 - Spring 2014

3/6/2014



Parallel Loop and Scheduling

= Parallel loop

#pragma omp parallel for
for (i=0; i<n; i++)
a[i] =2 * i;

= Independent loop iterations

m Task assignment schemes:
= Static: loop iterations equally divided between tasks
= Dynamic: loop iterations assigned (in small units) dynamically
= Guided (dynamic with variable allocation size)

3/6/2014 CSC 258/458 - Spring 2014

OpenMP-based SOR

#pragma omp parallel private(j)
{
#pragma omp for schedule(dynamic, ..)
for (i=1; i<n; i++)
for (J=1; j<n; j++)
temp[i1[j] = (orid[i-1][j]+grid[i+1][j]+
grid[i][i-1]+grid[i][i+11)74;

#pragma omp barrier
#pragma omp for schedule(dynamic, ..)
for (i=1; i<n; i++)

for (=1; j<n; j++)
grid[i10] = temp[i10i1;

¥

Compatible with sequential programs (Incremental parallelism)!

3/6/2014 CSC 258/458 - Spring 2014 10

High-Performance Fortran

= First developed at Rice University
= Parallel extension to Fortran

= Data-parallel model
= Define an array of data
= Operate on array elements in parallel

3/6/2014 CSC 258/458 - Spring 2014

11

Automatic Parallelism

Compiler analyzes dependencies and exposes parallelism.

Runtime system manages parallel execution and synchronization
to observe the dependencies.

for (i=1; i<n; i++)
for (g=1; j<n; j++)
temp[il0)] = (grid[i-11[j]+grid[i+11[]+
grid[il[j-1]+grid[i1[j+1]1)74;

for (i=1; i<n; i++)
for (J=1; j<n; j++)
grid[i10] = temp[i1031;

3/6/2014 CSC 258/458 - Spring 2014 12

3/6/2014



Automatic Parallelism

Pointers aren’t friends of automatic parallelism

int x;
int y;

int* ptr = & - INPUT;
write(*ptr);
read(x);

3/6/2014 CSC 258/458 - Spring 2014

13

Speculative Parallelization

= An example scenario:

= The two procedures may run in parallel (no dependency), but | am
not sure

= | am concerned with writes to shared data

= Soif I run them speculatively in parallel and no such writes actually
happen, then the parallelization is safe

Research by Prof. Chen Ding and students:

= Run the two procedures in separate processes with write protection
on shared data

= If no access fault during runs, we succeed and merge parallel results

Generalization
= Expose speculative parallelism
= Perform checks to validate or discard speculative run

= Valuable when computing resources are plenty, but parallel
programming is difficult

3/6/2014 CSC 258/458 - Spring 2014

14

Specialized Parallelism: MapReduce

Motivation:
= Parallelism for big data processing
= Traditional threads/MPI models are challenging to programmers

Two-stage data processing
= Data can be divided into many chunks

= A map task processes input data and generates local results for
one or a few chunks

= A reduce task aggregates and merges local results from multiple
map tasks

Issues
= Easy to program but limited semantics

= Need good system support for performance, scalability, and fault
tolerance

3/6/2014 CSC 258/458 - Spring 2014

15

Specialized Parallelism: Server

= Computer application serving

(potentially many) interactive clients

= Parallelism: many requests run
concurrently in a server

external requests

N

But unlike the parallel applications

we have seen so far

= Easily partitioned to fine-grained
requests without inter-request
dependencies, no need for
synchronization
= embarrassingly parallel

= Highly multiprogrammed, many
context switches

= More work in the OS, so OS
parallelism matters more

= Performance (quality-of-service) of
each request

3/6/2014 CSC 258/458 - Spring 2014

16

3/6/2014



