Hadoop Parallel Programming Kai Shen 3/20/2014 CSC 258/458 - Spring 2014 1

MapReduce

- A programming interface (two-stage Map and Reduce) and system support such that:
 - the interface is easy to program, and suitable for many big data processing applications;
 - the underlying system can automatically support parallelism, data movement, load balancing, and fault-tolerance behind this interface.
- Strength (compared with threads, MPI, etc.)
 - Ease of programming
 - Integration with data management to better support big data apps
- Weakness
 - Not applicable to all applications
 - More difficult to achieve good performance

3/20/2014 CSC 258/458 - Spring 2014

.

Hadoop

- Original MapReduce/GFS implementation used at Google, but not shared with the public
- Hadoop: Java-based implementation of MapReduce
 - Originated at Yahoo but made open-source
 - Used by Facebook (more than 100 PetaBytes of data),
 Amazon (EC2 used by NYTimes), and many other places ...
- Hadoop implements MapReduce
 - Multiple TaskTrackers run map()/reduce() tasks
 - Single JobTracker assigns tasks to TaskTrackers and manage the entire workflow
 - Each TaskTracker sends periodic heartbeats to the JobTracker for fault detection and management

3/20/2014

CSC 258/458 - Spring 2014

Hadoop Distributed File System

- Hadoop works with Hadoop Distributed File System (HDFS)
 - Inferior to GFS in many ways (poor support for mutable data replication, incompatible with POSIX standard); but open-source

3/20/2014

Hadoop System Structure

http://upload.wikimedia.org/wikipedia/en/2/2b/Hadoop 1.png

- JobTracker and NameNode work together to support intelligent task placement
 - Dynamic load balancing
 - Data affinity

3/20/2014

CSC 258/458 - Spring 2014

5

Hadoop Programming

- Java-based, implement several interfaces
- Mapper()
 - Maps input key/value pairs to a set of intermediate key/value pairs
- Reducer()
 - Reduces a set of intermediate values which share a key to a smaller set of values.
- Tool()
 - Handles your custom command inputs or any other custom preparation work

3/20/2014

CSC 258/458 - Spring 2014

Hadoop Task Mapping

- Hadoop tries to assign map tasks to where the data is
- Surprisingly where the data is also affects how many map tasks are launched
 - The real number is typically no smaller than the number you specify, but could be larger if there are more distributed splits of your data
 - Always check the completion status of your run to be sure about the number of map tasks

3/20/2014

CSC 258/458 - Spring 2014

Hadoop Performance

- What important issues affect Hadoop performance?
- Parallelism: number of map tasks; load at reduce (programmer control)
- Data locality (largely system control)
- Load balancing: uniform/heterogeneous nodes; uniform/heterogeneous tasks (system/programmer control)
- Overhead of task/data management granularity of tasks and data partitions (programmer control)

3/20/2014

10

12

Assignment #5

- You will program three applications on the Hadoop parallel data processing platform.
- Goal: gain practical experience on Hadoop programming and learn the performance implication of parallel data processing.
- This assignment alone won't be enough to make you a great Hadoop programmer.

3/20/2014

CSC 258/458 - Spring 2014

9

11

Word Counting

- The input is one or more text files.
- You should count the number of files each word appears in.
 Your word identification should be case-insensitive and ignore anything that isn't a letter.
- We provide two datasets: one for correctness testing and another for performance tests.
- The first example of almost any MapReduce/Hadoop tutorial; you can pretty much have the solution to carefully go through the tutorial.

3/20/2014

CSC 258/458 - Spring 2014

Matrix-Vector Multiplication

 Matrix-vector multiplication takes a file describing a matrix as an input and has to also load a file with a vector. The matrix will be split across map tasks, but every task will need to load the entire vector.

3/20/2014

CSC 258/458 - Spring 2014

Iterative Linear System Solver

- Widely used for scientific computing and web data processing (PageRank).
- Iterative matrix-vector multiplication
 - MapReduce for each iteration
 - Data management between iterations

3/20/2014

14

16

What performance to expect?

- You may be disappointed by the speedup you see
 - Depending on what you use as a base, you may not see any speedup
 - Larger problems/datasets has higher chance to allow speedup
- TA may provide more guidance on this

3/20/2014

CSC 258/458 - Spring 2014

13

15

Our Hadoop Cluster

- One master node and 9 slave nodes
 - Small scale
- Status/usage check
 - Hadoop and HDFS
- Courtesy of using the shared Hadoop cluster
 - Particular for performance testing
 - Don't leave zombie tasks hanging in the system!

3/20/2014 CSC 258/458 - Spring 2014

Grading

- Equal grading weights for the three applications (but nowhere near equal difficulty!)
- Grade on correctness and performance
- On performance, we care about the raw speed at multiple (up to 8) maps, not so much on the speedup over your own solution at 1 map, which can be poor

3/20/2014

CSC 258/458 - Spring 2014

Miscellaneous Things

- Will post the assignment later today
- E-turnin
- Start working early
- Strongly encourage early turn-ins (bonus). Note that the last turn-in counts.
- Possibly run into issues, bear with us, potential award credit if discover and help solve problems with us
- TA session on April 3

3/20/2014