Parallelism and Concurrency
in Servers

il

Kai Shen

3/25/2014 CSC 258/458 - Spring 2014 1

3/25/2014

Server

= Computer application serving (potentially many) interactive clients
= An HTTP server that sends files upon requests
= A database server that executes SQL queries upon requests
= An email/messaging server that manages messages upon requests

= Parallelism: many requests run concurrently in a server

= But unlike the parallel applications we have seen so far

= Easily partitioned to fine-grained requests without inter-request
dependencies, no need for synchronization
= embarrassingly parallel

= Highly multiprogrammed, many context switches

= Performance (quality-of-service) and resource accounting at each
request

3/25/2014 CSC 258/458 - Spring 2014 2

Multi-processing vs. Multi-threading

n Multl—processmg server external requests
= each request is served by a process

= each request is served by a thread.

(Apache). \/

= Multi-threading server
|
: N |

= Compare multi-processing server
with multi-threading server
= efficiency
= robustness/isolation

= Pooling

= reuse a thread/process for multiple
requests

= may reduce process/thread creation

and termination costs

3/25/2014 CSC 258/458 - Spring 2014 3

User-level Threads

= Normal threads
= thread management/scheduling done by the OS kernel

= User threads
= thread management/scheduling done at user-level
= Benefit: efficiency, e.g., less context switching overhead

= Problem of user threads
= oblivious to kernel events, so all threads in a process are put to wait
when only one of them blocks on 1/0 (e.g., read())
= How to solve this problem?
= helper (normal) threads
= asynchronous I/0

3/25/2014 CSC 258/458 - Spring 2014 4

3/25/2014

Event-Driven Servers

= Event-driven servers
= divide request processing into stages, each of which is non-blocking
= each stage is triggered by an event
= the whole event controller runs in a single user thread

read request read file read the send data to
from network headers actual file network

X] T /

’ l Event disbatcher (select sysfem call)

n Flash Web server [Pai et al., USENIX1999]

= Problems: difficult programming, hidden 1/0?

3/25/2014 CSC 258/458 - Spring 2014

Request Scheduling

Scheduling or request execution
= Normal multi-tasking (a task is a process/thread or a request)

Staged resource-aware request scheduling
= Each request execution is partitioned into stages (like in event-driven
servers)
= Each stage has particular resource needs.
= Throttling early stage for admission control.

SEDA [Welsh et al., SOSP2001]

3/25/2014 CSC 258/458 - Spring 2014

High Concurrency Threaded Server

= What is your first problem when you try to run 10,000
requests/threads concurrently in a server?

= Capriccio [von Behren et al., SOSP2003]

= Bound the stack size?
= Linked stack

3/25/2014 CSC 258/458 - Spring 2014

Overhead with High Concurrency

= More frequent context switches? Cache pollution?

= Scalability of the select() system call [Banga et al., USENIX1998]

CPU cost of select()

Open connections

3/25/2014 CSC 258/458 - Spring 2014

Overhead with High Load Network
Servers

= With gigabit Ethernet:

= 125,000,000 bytes per second for 1,500bytes/frame
= 12us per frame

= if an interrupt handler consumes 3us CPU, then 25% CPU
processing on interrupt handling
m Soft timers [Aron and Druschel, SOSP1999]

= NIC buffers frames; only interrupt after multiple frames arrive
= CPU does a coarse-granularity polling

3/25/2014 CSC 258/458 - Spring 2014 9

3/25/2014

Control the Concurrency

external requests

= How to control the execution
concurrency?

= Uuse a request buffer queue

3/25/2014 CSC 258/458 - Spring 2014 10

Handle Server Overload

m Overhead of server overload:

= some requests have to be
success rate
abandoned
= when a request has to be
abandoned, resources already
consumed by this request is
wasted

good overload
management

bad overload
management = Principle: when abandoning a
request, do so as early as
possible
= drop new requests if the buffer
queue is already long

incoming request rate

3/25/2014 CSC 258/458 - Spring 2014 11

OS Overhead for Each Request

Q Application processes
Application access:

é E Sockets
|

TCP/UDP |

Software interrupt:

| P |

%‘ Interface queue
Hardware interrupt: [\

¢]
Network interface

3/25/2014 CSC 258/458 - Spring 2014 12

Lazy Receiver Processing
[Druschel&Banga OSDI1996]

@ O Application processes

Application access:

‘ ﬁ\\[E Sockets

TCP/UDP |

l P |

Per-socket \E ﬁ
Interface queue A
|

Hardware interrupt: /
v

Network interface

3/25/2014 CSC 258/458 - Spring 2014

13

3/25/2014

Request Context Tracking

= Oftentimes a request maps to a process/thread, but not always:
= Multi-stage server
= Process pooling
= Background tasks

= Tracking a request context helps:
= Fine-grained resource accounting
= Performance debugging

= How to track the request context?

= Capture data dependencies — the web server request thread is
sending a socket message to a database thread

= Capture control dependencies — the main request thread is cloning
another thread to do some auxiliary work

3/25/2014 CSC 258/458 - Spring 2014

14

An Example of Request Context

Tomcat Jboss Jboss RUBIS RUBIS MySQL
Servelet Invoker RMI-Disc QueryHome ltemHome Database
Request

3/25/2014 CSC 258/458 - Spring 2014

15

