il

Distributed Systems

Kai Shen

3/27/2014 CSC 258/458 - Spring 2014

3/27/2014

Parallel Computing vs.
Distributed Systems

Parallel computing — compute sub-tasks simultaneously so that
work can be completed faster.

Distributed systems — a set of autonomous computers working
together to appear as a single coherent system (and to achieve
unified goals). Examples:

= client-server web transactions

= networked file systems

= adata center with hundreds of thousands of machines
= crowdsourcing among many smartphones

Parallel computing more identified with what it does
Distributed systems more identified with what they are

Not mutually exclusive
= MPI and MapReduce

3/27/2014 CSC 258/458 - Spring 2014

Distributed Systems Model

Study of general approaches requires a system model

Autonomous computers
Network connecting all computers (all-to-all reachable)
Communications
= Messages
= Streams
Failures
= Messages may be lost
= Nodes may stop working
= Or worse!

3/27/2014 CSC 258/458 - Spring 2014

Distributed Systems Overview

Time and order
= Challenging but useful in distributed systems

Fault tolerance
= Make consistent decisions when nodes may fail

Replication and consistency

= Consistent replication with updates: Does each replica get all the
updates? Are updates applied in the same order?

Scalable Internet systems
= Data centers, cloud computing, distributed data store (Bigtable etc.)

3/27/2014 CSC 258/458 - Spring 2014




Time and Clocks

s Why is it important?
= Determine the order of events occurred on different computers

= Examples:

= In “make”, source files who have not been changed since last compile
don’t have to be recompiled
= Compilation and editing on different computers

= Two distributed updates to the same location need to be ordered to
know the final state

= More examples?

3/27/2014 CSC 258/458 - Spring 2014

3/27/2014

Physical Clocks

= How do we get time?

= Fixed-frequency events
= Quartz crystal oscillates at fixed frequency to triggered timer interrupts
= Atom vibrates (makes state transitions) at fixed frequency

= Consistent for a single timing device
m But drifts/skews common over multiple devices in a distributed system

3/27/2014 CSC 258/458 - Spring 2014 6

Physical Clock Synchronization

= Clock synchronization
= I|dentify clock skewness and correct it by adjusting clock
= No turning back in time

m Cristian’s algorithm
= A client requests time from a server, the server responds with current
time
= Delay in response — estimate as half of request/response time
= Averaging of everyone’s time
= A central server polls everybody and does the averaging

3/27/2014 CSC 258/458 - Spring 2014

Distributed Clock Synchronization

= Basic mechanisms: broadcast or poll
= Everyone (or some clock source) broadcasts its time periodically
= A node can poll clock sources for the time

= Approach
= Calculate clock drifts from multiple sources and averages them
= Marzullo's algorithm: the best estimate is taken to be the
interval consistent with the largest number of sources

http://en.wikipedia.org/wiki/Marzullo%27s algorithm
Also foundation of the Network Time Protocol

3/27/2014 CSC 258/458 - Spring 2014 8




Precise Timing

= Atom clock

= Atomic Clock FOCS-1 (Switzerland) started operating in 2004 at an
uncertainty of one second in 30 million years.

= http://en.wikipedia.org/wiki/File:FOCS-1.jpg

= GPS computes precise time
= 10s of nanoseconds accuracy, but affected by Selective Availability

3/27/2014 CSC 258/458 - Spring 2014

3/27/2014

Logical Ordering

= Agreement on ordering of events (rather than the absolute time)
is what matters

= Lamport ordering of distributed events

= Inherent ordering: a — b, or “a happens-before b” holds regardless of
runtime conditions (such as processor speed, machine overload, and
message delays)

= Specifically, a happens-before b

= if a occurs before b on the same computer or a/b are send/receive
events of the same message on two computers
= transitive relation

= Total ordering vs. partial ordering

3/27/2014 CSC 258/458 - Spring 2014 10

Lamport Logical Clock

= Assign timestamp to each event C(e) that follows “happens-
before” partial ordering
= Every computer maintains a local incrementing timestamp
= Each message carries the sending time of the sender

= Upon receipt of a message, the receiver clock is set to the greater of
its own or the message timestamp + 1

= Lamport clock
= follows “happens-before” but adds more ordering
= is totally ordered?
= Use machine ID as a secondary criterion to break ties

3/27/2014 CSC 258/458 - Spring 2014

11

Utilization in Totally Ordered
Broadcasts

= Totally ordered broadcasts
= Update management in replicated databases
= Assumptions
= FIFO messages between same sender/receiver pair
= Messages are not lost
= Solution
= Each message carries sender’s timestamp
= Received broadcast messages are buffered, acknowledged (in broadcast)
= Deliver a message if
= it has the earliest timestamp in buffer
= and already acknowledged by everyone

= Guarantee: will not receive a new message with earlier timestamp

3/27/2014 CSC 258/458 - Spring 2014 12




3/27/2014

Vector Timestamps Utilization on Race Detection

= Lamport logical clock follows but may go beyond the “happens-

before” ordering = A distributed race condition may occur if two conflicting updates

are not causally ordered (unordered by the vector clock)

= Vector timestamp: n-element vector for n-computer system = Unordered updates may occur in either order depending on the

= At computer i: runtime condition

= VT[i] indicates the number of local events occurred so far (incremented
after each local event)
= VT[j#i] =t means that computer i knows that t events have occurred at
computer j (updated after each received message)
= Each message carries the full timestamp, updates receiver
= http://en.wikipedia.org/wiki/File:Vector Clock.svg
= Event with VT, happens before event with VT, if and only if every
element in VT, is less than or equal to corresponding element in VT,

3/27/2014 CSC 258/458 - Spring 2014 13 3/27/2014 CSC 258/458 - Spring 2014 14




