Distributed Systems
Fault Tolerance

Kai Shen

4/8/2014 CSC 258/458 - Spring 2014 1

Distributed Snapshots

= Snapshot of a distributed system for checkpointing/restart
P Q
mess"gexv

D
Ps J:

M. Quete | ()5

= Can there be a message sent after Ps and received before Qs?
= Message queue for Qs

4/8/2014 CSC 258/458 - Spring 2014

Chandy-Lamport Distributed Snapshots

= Any process can initiate snapshot-taking
= Record own state and broadcast marker
= Start recording all messages received on all incoming channels

= Marker receiving rule (followed also by the initiator)
= If I have not yet recorded my own state (first marker being received)
= Record own state and broadcast marker
= Start recording all messages received on all incoming channels
= If I have already recorded my own state (not the first marker)
= Record state of channel on which maker was received
= Stop recording that channel

= When does it terminate?

4/8/2014 CSC 258/458 - Spring 2014

Consensus Problem

= Many distributed system problems are about reaching decisions
consistently

= Whether to commit a transaction in a distributed database?

= How to order a series of updates in a replicated database?

= Who gets the lock first in a distributed lock management?

= Who should be the leader to perform a task on behalf of all of us?

4/8/2014 CSC 258/458 - Spring 2014

4/8/2014



Fault Tolerance

Fault tolerance in a distributed system
= Nodes may fail, messages may disappear
= Non-faulty nodes still want to get work done

Fault-tolerant consensus:

= Reach agreement on something, e.g., determine whether a bit should
belor0

= Consistency: all must agree on one value

= Non-triviality: both 1 and 0 may appear as the agreed result,
depending on the system semantics

4/8/2014 CSC 258/458 - Spring 2014

Is it Difficult?

= Two-generals’ problem

= Two nodes with a faulty communication line

= Try to reach agreement by proposing an time of coordinated attack
and wait for acknowledgement

Impossibility result for any deterministic protocol

= Assume a minimal set of successful messages that convince both to
attack

= If the last message was lost, then the receiver would have doubt
while the sender would attack

Non-deterministic protocol
= Message may be lost but delivery time is bounded; resend if lost
= Protocol completes when message delivery eventually succeeds

4/8/2014 CSC 258/458 - Spring 2014

Paxos Algorithm (Lamport)

Failure modes
= Nodes fail-stop
= Messages can be lost, but do not linger forever

Basic idea
= Leader gathers majority opinion, makes proposal, waits for majority
to accept
4/8/2014 CSC 258/458 - Spring 2014

Paxos Algorithm

Initiate a round, the leader sends “Collect” to everyone.

A node, receiving the message, responds with “Last” message of
any previously accepted value (if any).

When the leader collects >n/2 “Last” messages (info-quorum), it
proposes a value through a “Begin” message to everyone.

A node, receiving the message, accepts the proposed value and
responds with “Accept”.

The leader (or anyone who wants to know the consensus result)
waits for >n/2 “Accept” messages (accept-quorum) to successfully
conclude the round.

4/8/2014 CSC 258/458 - Spring 2014

4/8/2014



Paxos Algorithm (Lamport)

= Around may not succeed
= Failure of nodes (or leader), loss of messages
= If a round fails, another can be started by the leader or a new leader

= Can two rounds both succeed?

= Can they accept different values?

= A successful round lead to the acceptance of a value by a majority; all
nodes must ever only accept one value eventually

= Non-deterministic protocol; tolerate failures of fewer than half of
the nodes

4/8/2014 CSC 258/458 - Spring 2014 9

Byzantine Failures

= Node failures:
= Crash, or fail-stop
= Byzantine: do arbitrary (maybe malicious) things

= Consensus with fail-stop failures:
= Non-faulty nodes try to reach a decision
= Then impose upon the whole system as a majority
= For k failures, whole system size is at least 2k+1

= Consensus with Byzantine failures:
= How to guarantee the decision is the majority of non-faulty nodes?
= For k failures, we need at least 2k+1 good nodes
= n-node Byzantine system cannot tolerate k failures if n<=3K

4/8/2014 CSC 258/458 - Spring 2014 10

Consensus in Asynchronous Systems

= Synchronous systems
= Messages take bounded delay (operate in steps)

= Asynchronous systems
= Messages can take arbitrarily long
= Impossible to distinguish message losses from slow messages

= Impossibility result
= Not even a single machine failure can be tolerated

4/8/2014 CSC 258/458 - Spring 2014 11

4/8/2014



