Data Replication in
Distributed Systems

il

Kai Shen

4/18/2014 CSC 258/458 - Spring 2014 1

Data Availability

= Data-driven applications
= Web search, online message board, collaborative document editing,

= Availability of data is important
= After a node fails but before it restarts
= What if a node/storage permanently fails and has to be replaced?

4/18/2014 CSC 258/458 - Spring 2014

Data Replication

= Replication
= Maintain multiple copies of data at replicated machines

= Many clients read/write; each write is done at all servers; each read is
served by one

= Benefits
= Data availability and durability over failures
= Performance

= Introduce consistency issues (illusion of single data copy)
= Eventual convergence of replicated state
= Consistent client views during concurrent client accesses

4/18/2014 CSC 258/458 - Spring 2014

Replication Consistency

= Eventual convergence of replicated state
= All replicas agree on the same data at stabilization
= also called eventual consistency
= Requirements: all updates reach all replicas; updates are performed
in a consistent order at all replicas

= Consistent client views during concurrent client accesses—
Sequential consistency: there exists a hypothetical sequential
order of all operations from all clients that
= returned value in a read operation is that written by last write in the
sequential order,
= the sequential order matches the order of operations from each
client.

4/18/2014 CSC 258/458 - Spring 2014

4/18/2014



Replication in Shared-Memory
Multiprocessor

= Shared-memory multiprocessor
= Data is potentially replicated in processor caches

= How to achieve consistency?

= Bus snooping (invalidate/update a local copy if the data is modified
at another replica)

= Operations from each client proceed serially in program order

4/18/2014 CSC 258/458 - Spring 2014

Replication in Distributed Systems

= A group of distributed machines connected by network
= Can we use the bus snooping?

= Synchronous writes to all replicas
= A write does not return until it is committed at all replica
= Lock up relevant data during the write using two-phase commit

= Performance and scalability?

4/18/2014 CSC 258/458 - Spring 2014

Scalable Distributed Data Structures
[Gribble et al. 2000]

= “Synchronous writes to all replicas” does not necessarily sacrifice
performance/scalability.

= In databases with complex semantics, we often have to lock too much
data for a write, then block too many reads.

= If data unit of each write is simply defined, over-locking is not a
problem.

= Consider hash table with write(key,value) and read(key)
= Simple semantics, well defined read/write data units
= Powerful enough to support many data access semantics

= Abstract data management (and its scalability, availability,
consistency) into simple data structures.

4/18/2014 CSC 258/458 - Spring 2014

Replication in Distributed Systems

= Synchronous writes to all replicas with two-phase commits

= Primary-secondary replication
= Writes initiated only at the primary, ordered and distributed to
secondaries asynchronously = ensuring eventual consistency
= Where are reads served?
= Primary-only
= All nodes (primary and secondaries)

= Consistency?
= Performance and scalability?

4/18/2014 CSC 258/458 - Spring 2014

4/18/2014



i Weak Consistency

Sequential consistency (strong consistency): if there exists a
hypothetical sequential order of all operations such that

= returned value in a read operation is that written by last write in the
sequential order

= the sequential order matches the order of operations from each client

= Often poor performance/scalability

= Weak consistency (beyond eventual consistency):

= Consistent from a single client’s point of view (read own writes,
monotonic reads)
= also called session consistency

4/18/2014 CSC 258/458 - Spring 2014

Bayou [Terry et al. 1995]

A group of loosely connected mobile devices
Writes are spread around, eventually reaching everyone

Eventual consistency
= Writes are executed at all nodes, in the same order

= Write (X) is tentatively executed; when write (Y) with earlier order
arrives, X is undone, Y is done, and then X is redone

= How do we know X is settled forever?

Session consistency (read own writes, monotonic reads)
= Writes are locally performed right away
= Reads are locally performed

4/18/2014 CSC 258/458 - Spring 2014 10

Porcupine [Saito et al. 1999]

= Tentative writes and undo are nasty
= If all writes are commutative, then they can be executed at
different replicas in any order.
= Adding/appending to a set
= Timestamped total object overwrites
= a write is performed if it follows all committed writes on the object

= a write is ignored if it precedes any already committed write on the
object

= Only satisfies the convergence of replicated state (eventual
consistency), but not sequential consistency

= May realize session consistency if all operations from one client
session is done at one server

= Implement a highly scalable replicated email system on a cluster
of machines

4/18/2014 CSC 258/458 - Spring 2014

11

Chain Replication
[van Renesse and Schneider 2004]

All replicas organized in a chain:

= writes go to the head, and then flow through the chain, and replies
are sent at the tail

= reads performed at the tail

Satisfy strong (sequential) consistency
Add node at the tail
Failure management: simple due to the clear structure

Performance and scalability?

4/18/2014 CSC 258/458 - Spring 2014 12

4/18/2014



4/18/2014

Replication/Consistency in GoogleDocs

Acknowledgement: learned from Amal Fahad
Replication
= Document copy at server and clients

Eventual consistency:

= All updates are submitted to server who decides order of writes,
maintains only authoritative copy

Client consistency:
= Two copies: screen copy and core copy
= Core copy incorporates authoritative updates broadcast from server
= Screen copy contains speculative, local updates

= Screen copy may be overwritten by core copy when new updates
arrive from the server (but not the other way around)

4/18/2014 CSC 258/458 - Spring 2014 13




