il

Parallel Programming

Kai Shen

1/23/2014 CSC 258/458 - Spring 2014

1/23/2014

Parallel Programming Steps

Converting a sequential application to a parallel one
= Decomposition into tasks
= Assign tasks to processors

= Orchestrate data access and synchronization

1/23/2014 CSC 258/458 - Spring 2014

Task Decomposition

Decomposition:
= over different functions
= over different data segments (over loop iterations)

Two tasks are dependent if they must follow their order in the
sequential program so that the program execution results aren’t
changed.

Three types of data dependences:
= Read-after-write
= Write-after-read
= Write-after-write
Only “read-after-write” is called true dependence

1/23/2014 CSC 258/458 - Spring 2014

Task Decomposition

= How good is the decomposition?
= How much parallelism in the resulted parallel program?

= Best-case running time under parallel execution — Assuming
dependent tasks must run serially, we can build a DAG of task
dependencies and critical path length indicates lower bound of
parallel execution time.

m Tradeoff on task granularity:
= smaller tasks may offer more parallelism/concurrency
= smaller tasks require more management/programming overhead

1/23/2014 CSC 258/458 - Spring 2014

1/23/2014

Task Assignment

Assign tasks to processors
= You often have more tasks than the number of processors

Goals:
= Load balance
= Minimize inter-processor data movement & maximize locality

Ways:
= Static assignment (possibly poor load balancing)
= Dynamic assignment

1/23/2014 CSC 258/458 - Spring 2014

Orchestration

= Access shared data
= Shared-memory parallel platform
= Distributed-memory parallel platform

= Performance implication: remote data access is expensive.

1/23/2014 CSC 258/458 - Spring 2014

Orchestration

= Synchronization
= Mechanism to enforce execution ordering between parallel tasks
= Maintain dependences
= Avoid races: e.g., “counter++” may be compiled into the following
instruction sequence:
registerl = counter;

registerl = registerl + 1;
counter = registerl;

Image two tasks running “counter++” in parallel.

= Synchronization primitives: mutex lock, condition, barrier, ...

= Performance implication: synchronization incurs costs
= Time to execute synchronization primitives; cost of execution blocking
= Granularity of synchronization

1/23/2014 CSC 258/458 - Spring 2014

Dynamic Task Assignment

= How does it work?

= Maintain a centralized queue of ready tasks, protected by
synchronization primitives like mutex lock

= Each thread grabs a task at the beginning; grabs another task after
completing the current one

= New tasks may be generated on the fly and added to queue
= Advantage: good load balancing

= Disadvantages with dynamic task assignment
= Data locality may be lost in the interests of load balancing
= Synchronization contention on manipulating the task queue

1/23/2014 CSC 258/458 - Spring 2014

1/23/2014

Dynamic Task Assignment

= Disadvantages with dynamic task assignment
= Locality may be lost in the interests of load balancing
= Synchronization contention on manipulating the task queue

= Fixable through distributed queues with work stealing
= Each thread has an exclusive task queue with good locality and no
contention
= When out of work (load imbalance), steal some task from another
queue with ready tasks

1/23/2014 CSC 258/458 - Spring 2014 9

Parallel Programming Example:
Successive Over Relaxation

= SOR implements a mathematical model for many natural
phenomena, e.g., heat dissipation, ocean currents

= Given a 2D grid of data, for some number of iterations:
= For each internal grid point, compute average of its four neighbors

for (i=1; i<n; i++)
for (j=1; j<n; j++)
templ[i][j] = 0.25 * (grid[i-1]1[j1+grid[i+1][j]1+grid[i1[j-1]+grid[i1[j+1]);
for(i=1; i<n; i++)
for(j=1; j<n; j++)
grid[i1[i] = temp[i][il;

Parallel Programming Example:
Successive Over Relaxation

for (i=1; i<n; i++)
for (j=1; j<n; j++)
templi][j] = 0.25 * (grid[i-1][j]+grid[i+1][j]+grid[i][j-1]+grid[i][j+11);
for(i=1; i<n; i++)
for(j=1; j<n; j++)

grid[i][i] = temp[i][i];

= Dependences:
= First (i,j) loop nest?
= Second (i,j) loop nest?
= Between the two loop nests?
= Between two iterations?

1/23/2014 CSC 258/458 - Spring 2014 11

1/23/2014 CSC 258/458 - Spring 2014 10
Parallel Programming Example:
Successive Over Relaxation
for (i=1; i<n; i++)
for (j=1; j<n; j++)
templ[i][j] = 0.25 * (grid[i-1][j]+grid[i+1][j]+grid[i1[i-1]+grid[i][j+11);
for(i=1; i<n; i++)
for(j=1; j<n; j++)
grid[i][j] = temp[i][i];
= Task decomposition:
= 1D partitioning: each task manages some columns or rows
= 2D partitioning: each task manages a 2D block of the grid
= Impact on data movement/communication?
1/23/2014 CSC 258/458 - Spring 2014 12

1/23/2014

Parallel Programming Example:
Gaussian Elimination

= Solving a system of linear equations

= Reduce an equation matrix into an equivalent upper-diagonal matrix

A X R
Al rl
p*Al+ A2 r2+p*rl
X =

= Partial pivoting to maintain numerical stability

1/23/2014 CSC 258/458 - Spring 2014 13

