Parallel Programming

»

Kai Shen

1/28/2014 CSC 258/458 - Spring 2014

1/28/2014

Gaussian Elimination: Dependencies

= Simplification —ignore pivoting and final solving step
= Reduce an equation matrix into an equivalent upper-diagonal

A X R
A n
P*A. 1 +A. , X _ Iy +p*ry

fori=1toN
for j=i+1to N
zero out A;; by adding p*A.; to A,

= Dependencies:
= Outer loop instances (e.g., i=2 depends on i=1)?
= Inner loop instances (e.g., j=3 depends on j=2)?
= Within one inner loop instance?

1/28/2014 CSC 258/458 - Spring 2014

Gaussian Elimination:
Task Decomposition

A X R
A, r
p*A.1+A Iy +p*ry
X =

fori=1to N
for j=i+1to N
zero out A by adding p*A.; to A.;

= Parallelism:
= Inner loop instances (row-wise)
= Within one inner loop instance (column-wise)

s Task decomposition:
= Row vs. column partitioning?
= 2-dimensional partitioning

1/28/2014 CSC 258/458 - Spring 2014

Gaussian Elimination:
Task Decomposition

= Row partitioning at different granularities

Row by row, Every proc gets a
cyclically contiguous chunk

= Better load balancing under cyclic partitioning

1/28/2014 CSC 258/458 - Spring 2014




1/28/2014

Pivoting

= Reduce an equation matrix into an equivalent upper-diagonal

X R
fi
X = e
fori=1toN

swap A ; (r;) with A, (r,) where a;, has largest absolute value
for j=i+1to N
zero out A;; by adding p*A.; to A,

= How does it complicate the parallelization (particularly row vs.
column partitioning)?

1/28/2014 CSC 258/458 - Spring 2014

Dynamic Task Assignment

= How does it work?

= Maintain a centralized queue of ready tasks, protected by
synchronization primitives like mutex lock

= Each thread grabs a task at the beginning; grabs another task after
completing the current one

= New tasks may be generated on the fly and added to queue
= Advantage(s) and disadvantage(s)

= Does it help Gaussian Elimination with pivoting?

1/28/2014 CSC 258/458 - Spring 2014

Block Computation

= Matrix multiplication (sequential)
= Large matrices (nxn) — even a single row/column won't fit in cache

A B C
= How many times each element of A,B has to be loaded?

= Block-by-block multiplication
= Three blocks (bxb) fit into the cache at the same time

A B C

1/28/2014 CSC 258/458 - Spring 2014

Gaussian Elimination:
Task Decomposition

= Row partitioning at different granularities

Row by row, Every proc gets a Every Er‘oc getsa
cyclically contiguous chunk block of rows

= A good block size to efficiently utilize processor cache, you
produce reasonable load balancing

1/28/2014 CSC 258/458 - Spring 2014




Irregular Parallelism

= Real problems contain large, sparse matrices

= Solve them as dense matrices waste time on zero-element
operations

= Sparse matrix computation

= Load imbalance (now you can really benefit from dynamic task
assignment)

= Managing nonzero fillins (hard to do block operations and utilize
cache effectively)

1/28/2014 CSC 258/458 - Spring 2014 9

1/28/2014

Example Speedup Results

= The speed ratio over the best sequential run

S+, afZ3560, IBM Rogatin

S, avd 1092, IBM Regatta

@ u @ ©

Speedup

5 M ow s o

1/28/2014 CSC 258/458 - Spring 2014 10

Alternative Methods for Solving Linear
Equations

= Faster solutions if we tolerate less precision
= Less-than-precise pivoting
= lIterative method

1/28/2014 CSC 258/458 - Spring 2014 11

Assignment #2
Shared Memory Parallel Programming

m Pre-assignment

= We provide you sequential/parallel SOR code (a different version,
called red-black ordering)

= You read, understand, and run it

= Main assignment

= Parallel Gaussian Elimination (with pivoting, but without block
computation or sparse computation)

= Different settings (input matrices, machines, proc #’s)

= Analysis and comparison (Row/column/2D partitioning, blocking
sizes, static vs. dynamic task assignment)

= Grading based on your written report!

1/28/2014 CSC 258/458 - Spring 2014 12




Assignment #2

= All should have accounts in CS grad/research network

= Familiarize with the parallel machines
= Multi-chip/socket
= Multi-core
= Hardware threading (or Intel hyperthreads)

1/28/2014 CSC 258/458 - Spring 2014

13

1/28/2014

Suggestions on Testing

Incremental testing:
= Try an artificial, small, dense input matrix first
= Try to parallelize without partial pivoting first

1/28/2014 CSC 258/458 - Spring 2014 14

Pthreads Synchronization Primitives

= Mutex lock (mutual exclusion)
= pthread_mutex_lock
= pthread_mutex_unlock

= Condition variable (waiting for a condition)
= pthread_cond_wait
= pthread_cond_signal
= pthread_cond_broadcast

1/28/2014 CSC 258/458 - Spring 2014

15

Barrier Synchronization

= A barrier is set for all threads

A thread can proceed beyond its barrier if and only if all
threads have reached respective barrier points

One way to implement the barrier:

Count the number of arrivals at the barrier

When a thread arrives, wait if this is not the last one, otherwise
unlock everyone else and proceed

Mutex lock to protect the arrival number, condition variable to
implement wait and broadcast

1/28/2014 CSC 258/458 - Spring 2014 16




